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Abstract

We model inter-temporal ambiguity as the scenario in which a Bayesian learner

holds more than one prior distribution over a set of models and provide necessary and

sufficient conditions for ambiguity to fade away because of learning. Our condition

applies to most learning environments: iid and non-idd model-classes, well-specified

and misspecified model-classes/prior support pairs. It shows that a Bayesian agent

does not suffer from long-run ambiguity if and only if the data support a unique model.
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1 Introduction

Let M be a family of models and C a set of prior distributions on it. If C contains

more than one prior distribution, its multiplicity represents the a priori ambiguity

∗We thank Werner Ploberger for his comments. Massimo Marinacci acknowledges the financial support
of the European Research Council (advanced grant INDIMACRO).
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perceived by a Bayesian decision maker (DM). This setting has been used to highlight

the interaction between learning and ambiguity.1

Marinacci (2002) formalizes the intuition that if a DM observes repeated draws

(with replacement) from the same ambiguous urn, ambiguity fades away over time

because he eventually learns the true composition. If the learning problem is well-

specified — in the sense that the true probability belongs to the model-class/prior

support pair adopted by the DM — ambiguity fades away because all posterior distri-

butions converge to a Dirac distribution on the true model.

Here, we generalize the result in Marinacci (2002) to the case in which the DM does

not learn the true probability because his prior view of the world is incorrect — that

is, when the learning problem is misspecified in the sense that the model-class/prior

support pair does not contain the true model/parameter. We show that ambiguity fades

away if and only if the data clearly designates a unique most accurate model (or a set of

models with equivalent predictions), a condition that is always satisfied in well-specified

learning problems and in most cases of misspecification. In a nutshell, ambiguity fades

away in all cases in which the empirical evidence eventually dominates the effect of

heterogeneity in the prior distributions. On the contrary, ambiguity persists in those

sequences in which two or more models with different predictions have comparable

likelihood infinitely often. When this happens, the posteriors are “split” between these

models with weights that depend on the priors, and the DM perceives ambiguity.

Our key contribution is to formalize necessary and sufficient conditions for the

posteriors obtained from all priors to concentrate on the same model. Our findings

rely on and generalize standard results in statical learning theory. With a unique

prior, a sufficient condition for the Bayesian posterior to concentrate on the true model

(consistency) is that the prior µ attaches a positive mass to the true parameter(s)

(Doob, 1949; Freedman, 1963). In a multiple priors setting, this result continues to

hold: if all priors give positive mass to the true model, then all posteriors concentrate

on it and ambiguity fades away (Marinacci, 2002). On the other hand, in an iid setting

1Epstein and Schneider (2003) provides an axiomatization of prior-by-prior updating which requires the
process of conditional preferences to be dynamically consistent. Because we are focusing on one-step-ahead
decisions, the consistency issue has no bite in our setting.
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and if the true parameter set does not belong to the prior support, the posterior

concentrates on the model that is the closest in terms of K-L divergence to the truth if

it is unique (Berk, 1966; White, 1982). In a multiple priors setting, this result suggests

that if the minimizer of the K-L divergence, P ∗, is unique and all priors give it a positive

weight, then ambiguity fades away because all posteriors concentrate on P ∗. Theorem

2 proves this conjecture and generalizes it to the non-iid setting, while Theorem 1

provides a condition for the posteriors derived from all priors to concentrate on the

same model (on a set of models with identical predictions) that is both necessary and

sufficient.

2 Discussion

We prove that a Bayesian agent with multiple priors does not suffer from long-run

ambiguity in all those cases in which the data support a unique model (or a set of models

with identical predictions). How common are these situations? A precise answer to

this question is hard to give because it depends on the true probability measure, which

is typically unknown. If all measures in M and the true model are iid, ambiguity

fades away on a set of parameters that has Lebesgue measure 1 (as an implication

of Theorem 2), thus suggesting that ambiguity should be the exception, rather than

the norm. However, we are cautious about concluding that ambiguity typically fades

away in real world situations because models and parameters are hardly iid and chosen

at random. For example, consider the standard problem of predicting stock market

returns. Several models have been proposed and, to this date, it is not clear which

model is the closest to the truth — there is no definite statistical test that favors a

unique model over another. Because the empirical evidence does not support a unique

model, an investor with a set of priors on available models of stock market returns

suffers ambiguity despite the large amount of available financial data.

Our condition for ambiguity to persist in the long run is harder to satisfy than

conditions based on the multiple-likelihood setting (e.g., Epstein and Schneider, 2007;

Epstein and Seo, 2015). Our, multiple-prior, model describes a DM who is uncertain
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about the a priori probability of each model in the support but updates each model

in a unique way. On the other hand, the multiple-likelihoods model describes a DM

who believes that signals have multiple, hence uncertain, interpretations. Such signals

can generate ambiguity even where none is present a priori. Learning models, that

accommodate such a possibility generate posterior sets different from those defined in

this paper, and they lead to different results regarding if/when ambiguity fades away.

3 Probabilities

We consider a family of models M = {Pθ : θ ∈ Θ} with a finite parameter set

Θ ⊂ Rn, defined on a σ-algebra Σ∞ of subsets of X∞ with representative element

x∞ = x1, x2, ...; where X∞ := ×∞X is the infinite Cartesian product of a finite obser-

vation space X with representative element x and σ-algebra Σ.2 With a slight abuse of

notation, we use Pθ(x
t) to denote the probability that model Pθ attaches to the cylin-

der with base xt, and the likelihood that model Pθ attaches to the partial sequence

(x1, ..., xt). The prior information about the parameters is summarized by prior distri-

butions µ ∈ ∆Θ. The set of prior distributions is C. For any prior distribution µ ∈ C

the joint distribution of the parameters and the observations is Pµ ∈ ∆(Θ×X∞). By

definition, for all A ⊆ Θ we have that:

Pµ(A× xt) :=

∫
A
Pθ(x

t)dµ.

We denote by µ(.|xt) ∈ ∆Θ the usual posterior given the observations xt,3 while

Pµ(.|xt) ∈ ∆(Θ×X) is the one step ahead predictive distribution of xt+1, given obser-

vations xt. By definition, for all A ⊆ Θ:

Pµ(A× xt+1|xt) :=

∫
A
Pθ(xt+1)dµ(.|xt) :=

∫
A
Pθ(xt+1)

Pθ(x
t)dµ∫

Θ Pθ(x
t)dµ

.

2In the rest of the paper, we focus on the case of extractions from ambiguous urns. However, this setting
can accommodate most prediction tasks with minor changes which do not affect our results. For example,
x could be a vector of stock market returns, M a set of regression models with parameters to be estimated
and C a (meta)prior over the set of regression.

3We rule out the possibility of observing an event which is impossible according to all models in M.

4



4 Decisions

Let C be the space of consequences on which the DM has a bounded utility function

u : C → R. An act f : X → C is a Σ−measurable map that associates a consequence to

each observation in X. We are considering one step ahead acts. The decision criterion

adopted by the DM depends on the quality of his prior information. For illustrative

purposes, we briefly provide examples of the DM’s decision criterion when facing risk,

unambiguous uncertainty, and ambiguity.

Suppose there is an urn with 3 balls, each of which is either white, xW , or red, xR.

Suppose the DM chooses a color and draws a ball from the urn. If this ball matches

the DM’s color, he wins $100. Otherwise, he gets nothing. The consequence space is

C = {$0, $100}, the observation space X = {xR, xW }, and the DM can choose between

two acts: fR, he bets on a red ball; and fW , he bets on a white ball. The following

table summarizes this decision problem:

xR xW

fR $100 0

fW 0 $100

(1)

Finally, θ is the fraction of white balls in the urn, so that Θ = {0, 1/3, 2/3, 1}. If draws

are made with replacement from the same urn, M is the iid Bernoulli distribution

family with parameter set Θ.

• Scenario 1: Risky Urns. The DM knows the true composition of the urn θ0

(e.g., he knows that it contains exactly two white balls). In this case, the DM’s

choice criterion is, for every act f , given by:

∫
X
u(f(x))dPθ0 .

• Scenario 2: Bayesian Urns. The DM does not know the composition of the

urn but has enough prior information to uniquely pin down a prior distribution µ

on the set of possible compositions Θ. That is, C is a singleton. For example, the

DM might believe that all the compositions of the urn are equally likely. Unlike
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the previous case, the DM’s choice criterion now changes over time because of

learning. In the first period, the DM’s choice criterion is, for every act f , given

by: ∫
Θ

[∫
X
u(f(x1))dPθ

]
dµ =

∫
X
u(f(x1))dPµ(x1|∅).

Subsequently, as the DM incorporates past realization, xt, to his prior distribution

using Bayes’ rule, his choice criterion becomes:

∫
Θ

[∫
X
u(f(xt+1))dPθ

]
dµ(.|xt) =

∫
X
u(f(xt+1))dPµ(xt+1|xt).

• Scenario 3: Ambiguous Urns. The DM does not know the composition of

the urn and does not have enough prior information to uniquely pin down a

distribution on the set of possible compositions of the urn. That is, C is not a

singleton. For example, the DM might only know that every composition has at

least a 1
10 probability to be the correct one: C :=

{
µ ∈ ∆ : ∀θ ∈ Θ, µ(θ) ≥ 1

10

}
.

In evaluating an act in this scenario, the DM has to use a set criterion. In the

first period, the DM’s set criterion is, for every act f , given by:

{∫
X
u(f(x1))dPµ(x1|∅) : µ ∈ C

}
.

Subsequently, as the DM incorporates past realizations using Bayes’ rule, his

choice criterion becomes:

{∫
X
u(f(xt+1))dPµ(xt+1|xt) : µ ∈ C

}
.

Possible summaries of this set criteria are the infimum and supremum:

sup
µ∈C

∫
X
u(f(xt+1))dPµ(xt+1|xt) ; inf

µ∈C

∫
X
u(f(xt+1))dPµ(xt+1|xt).
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5 Long-run ambiguity

As in Marinacci (2002), we consider the difference between the DM’s expected utility

under the most advantageous prior and under the least advantageous prior in C to be a

measure of the ambiguity that a DM perceives in evaluating an act f . We are ultimately

interested in verifying whether this quantity converges to 0 as the number of past

observations goes to infinity and each prior gets independently updated using Bayes’

rule. A tight sufficient condition for the most conservative and the least conservative

expected utility to coincide is to require that the posteriors calculated from all priors

in C eventually coincide (see Lemma 1 in Appendix).4 We say that

Definition 1. Ambiguity fades away at path x∞ ∈ X∞ if,

lim
t→∞

[
sup

µ′,µ′′∈C

∫
X

∣∣dPµ′′(xt+1|xt)− dPµ′(xt+1|xt)
∣∣] = 0; (2)

where, ∀t > 0, xt indicates the first t realizations of path x∞.

Definition 1 requires that all posteriors concentrate on the same model (or on a

set of models with identical predictions) on the realized path. Unlike the definition

proposed by Marinacci (2002) — which requires all the posteriors to converge to a

Dirac measure on the true model on a set of sequences of true measure 1 — ours does

not assume an iid structure, and it does not depend on the true model. Thus, it can

be used to discuss long-run ambiguity when the model class support contains models

with learning, a time series structure, or is misspecified. In those cases in which all

posteriors concentrate on the true model, our definition is equivalent to the notion of

weak merging (Lehrer and Smorodinsky, 1996).

4This condition fails to be necessary only in those knife-edge cases in which the posteriors do not con-
centrate on a unique model but the expected utilities of the preferred act calculated from all posteriors
coincide.
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6 Main result

In this section, we present our necessary and sufficient condition for ambiguity to fade

away. The driving force of our result is the observation that the key component of

Bayesian learning is the existence of a unique most accurate model, rather than the

true model belonging to the prior support. For instance, Berk (1966) shows that if all

models in the support and the truth are iid, then the posterior obtained from a unique

prior eventually assigns probability 1 to the set of parameters that minimize the K-L

divergence from the truth, if unique. Here, we generalize Berk (1966)’s result to the

case of multi-prior, non-iid setting and provide a condition that is both necessary and

sufficient for all posteriors to concentrate on models that deliver the same predictions.

Let’s start by formalizing an appropriate generalization of the notion of unique most

accurate model.

Definition 2. Given a path x∞ ∈ X∞ and a family of models M = {Pθ : θ ∈ Θ}. We

say that θ̂ := θ̂(x∞,Θ) is a strong maximum likelihood (SML) model if θ̂ ∈ Θ and

∀θ ∈ Θ, lim
t→∞

Pθ(x
t)

Pθ̂(x
t)
∈ [0,∞) exists;

where, ∀t > 0, xt indicates the first t realizations of path x∞.

Theorem 1 shows that the existence of a SML is a necessary and sufficient condition

for ambiguity to fade away.

Theorem 1. Let M = {Pθ : θ ∈ Θ} be a family of models and C a compact set of

non-degenerate prior distributions on Θ, ambiguity fades away at path x∞ if and only

if θ̂(x∞,Θ) exists.

Suppose θ̂ is unique, by Definition 2 this implies that the SML model is the model

whose likelihood converges to zero at the slowest rate — i.e., ∀θ 6= θ̂, lim
t→∞

Pθ(xt)
Pθ̂(xt) = 0.

Therefore, ambiguity vanishes because eventually the posteriors calculated from all pri-

ors attach unitary weight to model SML. Otherwise, if Θ contains more than one SML

model, all SML models must eventually deliver identical predictions on x∞ because

the limit exists. Ambiguity vanishes because eventually the posteriors calculated from
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all priors attach positive weights only to SML models, and all SML models deliver

identical posterior distributions.

An alternative condition for ambiguity to fade away can be obtained by noticing

that a sufficient condition for the existence of a unique SML model is the presence of

a unique model with the lowest average K-L divergence.

Definition 3. The average K-L divergence from Pθ to the true probability Pθ0 is

D̄(Pθ0 ||Pθ) := lim
t→∞

1

t
EPθ0

[
ln
Pθ0(xt)

Pθ(xt)

]
.

This approach delivers a sufficient condition for ambiguity to fade away Pθ0-a.s.5

which generalizes Berk (1966)’s results to the non-iid setting and includes Marinacci

(2002)’s condition as a special case. When C is a singleton, if all models in M and

the true measure are iid, Berk (1966)’s result follows from Theorem 2 because the

average K-L divergence coincides with the K-L divergence Pθ0-a.s. as an implication

of the Strong Law of Large Numbers. Whereas, if all models in M are iid and the

truth belongs toM, Marinacci (2002)’s condition follows because the true model is the

unique maximizer of the K-L divergence.

Theorem 2. Let M = {Pθ : θ ∈ Θ} be a family of models and C a compact set of

non-degenerate priors on Θ, ambiguity fades away Pθ0-a.s. if argmin
θ∈Θ

D̄(Pθ0 ||Pθ) exists

and is unique.

Unlike the condition of Theorem 1, which depends only on the properties of the se-

quence of realizations, Theorem 2’s condition requires an apriori knowledge of the true

probability distribution —to calculate the K-L divergence. In a nutshell, the difference

between the two conditions is as follows: Theorem 1 tells us that ambiguity persists if

and only if the data is inconclusive, while Theorem 2 tells us that ambiguity persists if

the true probability generates inconclusive data Pθ0-a.s.. We prefer the former because

it directly links ambiguity to properties of observables, rather than the true model,

which is hardly known in practice and unobservable. For example, while a sequence of

5The necessary part of Theorem 2’s condition is lost because the existence of two models such that
D̄(Pθ0 ||Pθi) = D̄(Pθ0 ||Pθj ) does not rule out the existence of a unique SML model (Massari, 2017), nor does
it imply that Pθi ’s predictions eventually coincide with Pθj ’s.
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stock market returns is observable, their distribution is not.

We conclude by presenting scenarios illustrating the use of Theorem 1. Scenar-

ios 4, 5 and 7 show cases in which ambiguity fades away because the truth generates

sequences that support only one model among those believed possible by the DM. Con-

versely, scenarios 6 and 8 shows that ambiguity persists in the long run when the truth

generates sequences which equally endorse at least two models with different predic-

tions in the prior support infinitely often. That is, if and only if prior distributions

affect next period predictions even after an arbitrarily large sample. The iid assump-

tion for models inM, the repeated urn setting, and the simplicity of the deterministic

sequences are chosen for illustrative purposes. More complicated examples can be eas-

ily constructed.

Suppose a DM confronted with decision problem 1 subjectively believes that he is

facing iid realizations from an ambiguous urn with three balls, two of which have the

same color. In our notation, he believes that M is the class of iid Bernoulli distribu-

tions with possible parameters Θ = {1
3 ,

2
3}. His prior information is accurate enough

to reduce ambiguity to only two possible priors on the composition of the urn: C =

{µ′(θ), µ′′(θ)}. These are, µ′(θ) = {µ′(1
3) = 1

2 , µ
′(2

3)=1
2} and µ′′(θ)={µ′′(1

3)=1
4 , µ
′′(2

3)=3
4}.

• Scenario 4: Well-specified model and ambiguity fades away. Draws are

indeed iid from an urn whose composition is θ0 = 2
3 . Because the learning problem

is well-specified (θ0 ∈ Θ), by the Strong Law of Large Numbers θ0 is the SML

model Pθ0-a.s.. Thus, Theorem 1 (and Marinacci (2002)) implies that ambiguity

fades away Pθ0-a.s..

• Scenario 5: Incorrect M and ambiguity fades away. Draws are not iid,

as the DM incorrectly believes. Instead, the urn is secretly changed before every

draw to deliver the deterministic sequence x∞ := {W,W,R,W,W,R, ...}. Because

the frequency of W converges to 2
3 , then θ̂ = 2

3 is the SML parameter in Θ. By

Theorem 1, all posteriors concentrate on θ̂ and ambiguity fades away. Although

the DM fails to realize that draws are not iid, he successfully learns the best
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parameter in Θ and ambiguity fades away.

• Scenario 6: Incorrect M and ambiguity persists. Draws are not iid, as the

DM incorrectly believes. Instead, he is facing the deterministic sequence x∞ :=

{W,R,W,R, ...}. Because of symmetry around 1
2 , there is not a strong maximum

likelihood in Θ and, by Theorem 1, ambiguity does not fade away. Intuitively, in

every even period Pθ= 1
3

and Pθ= 2
3

have identical likelihood. Therefore, each odd

period prediction obtained from priors µ′ and µ′′ coincides with their first period

prediction. Because µ′’s and µ′′’s first period predictions differ, their predictions

differ for every odd period, and ambiguity does not fade away.6

• Scenario 7: Correct M, θ0 /∈ Θ and ambiguity fades away. Draws are iid

from an urn whose composition is θ0 = 3
5 . In this case, M is correctly specified

because draws are indeed iid, but the learning problem is misspecified because

Θ does not contain the true parameter: θ0 /∈ Θ. It is easy to verify that θ̂ = 2
3

is the strong maximum likelihood Pθ0-a.s..7 Thus, Theorem 1 implies that both

posteriors concentrate on θ̂. Although the DM cannot learn the true model,

ambiguity fades away because the data clearly indicates which model is the most

accurate.

• Scenario 8: Correct M, θ0 /∈ Θ and ambiguity persists. Draws are iid

from an urn whose composition is θ0 = 1
2 . In this case, M is correctly specified

because draws are iid, but Θ is not, since θ0 /∈ Θ. Because of symmetry around 1
2 ,

there is not a strong maximum likelihood in Θ P -a.s. and, by Theorem 1, ambi-

guity persists P -a.s.. Intuitively, Pθ= 2
3

and Pθ= 1
3

can be shown to have identical

likelihood infinitely often Pθ0-a.s. (Massari, 2013). When this happens µ′’s and

6It is straightforward to verify that Pµ′(xW |xt) 6= Pµ′′(xW |xt) for every t even:

Pµ′(xW |xt) =
1

2

(
1
3

2
3

) t
2 1

3(
1
3

2
3

) t
2 1

2 +
(

1
2

2
3

) t
2 1

2

+
1

2

(
1
3

2
3

) t
2 2

3(
1
3

2
3

) t
2 1

2 +
(

1
3

2
3

) t
2 1

2

=
1

2

Pµ′′(xW |xt) =
1

4

(
1
3

2
3

) t
2 1

3(
1
3

2
3

) t
2 1

4 +
(

3
4

2
3

) t
2 3

4

+
3

4

(
1
3

2
3

) t
2 2

3(
1
3

2
3

) t
2 1

4 +
(

1
3

2
3

) t
2 3

4

=
7

12

7By the Strong Law of Large Numbers, lim
t→∞

P
θ= 1

3
(xt)

P
θ= 2

3
(xt) =P -a.s. lim

t→∞

(
( 1

3 )
3
5 ( 2

3 )
2
5

( 2
3 )

3
5 ( 1

3 )
2
5

)t
= 0.
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µ′′’s predictions differ and the DM suffers ambiguity, by the same argument used

in Scenario 5.

7 Conclusion

In a multiple prior setting, ambiguity fades away if and only if the empirical evidence

supports a unique model. Learning the true model is not a necessary condition for

ambiguity to fade away.

8 Appendix

In this appendix,

• Given two functions, f(.) and g(.), f(x) = o(g(x)), abbreviates lim
x→∞

f(x)
g(x) = 0;

• θ̂t := θ̂(xt) is the maximum likelihood model on the partial history xt;

• D
(
Pθ̂t ||Pθ

)
:=EPθ̂t

ln
Pθ̂t

(x)

Pθ(x) is the K-L divergence from Pθ to Pθ̂t .

Proof of Theorem 1

Proof. Because C is compact, then argmax
µ′,µ′′∈C

lim
t→∞

∫
X

∣∣dPµ′′(x|xt)− dPµ′(x|xt)∣∣ is non

empty. Thus, it suffices to prove that

∃SML⇔ ∀µ′, µ′′ ∈ C, lim
t→∞

∫
X

∣∣dPµ′′(x|xt)− dPµ′(x|xt)∣∣ = 0.
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• Let start by analyzing the case in which the SML, θ̂, is unique.

lim
t→∞

∫
X

∣∣dPµ′′(x|xt)− dPµ′(x|xt)∣∣
:= lim

t→∞

∫
X

∣∣∣∣∣∣
∑
θ

Pθ(x)
Pθ(x

t))µ′′(θ)∑
θ

Pθ(xt))µ′′(θ)
−
∑
θ

Pθ(x)
Pθ(x

t))µ′(θ)∑
θ

Pθ(xt))µ′(θ)

∣∣∣∣∣∣ dx

=a

∫
X

lim
t→∞

∣∣∣∣∣∣∣∣
Pθ̂(x)

1 +
∑
θ 6=θ̂

Pθ(xt))µ′′(θ)

Pθ̂(xt)µ′′(θ̂)

+

∑
θ 6=θ̂

Pθ(x)Pθ(xt))µ′′(θ)

Pθ̂(xt)µ′′(θ̂)

1 +
∑
θ 6=θ̂

Pθ(xt))µ′′(θ)

Pθ̂(xt)µ′′(θ̂)

+

−
Pθ̂(x)

1 +
∑
θ 6=θ̂

Pθ(xt))µ′(θ)

Pθ̂(xt)µ′(θ̂)

+

∑
θ 6=θ̂

Pθ(x)Pθ(xt))µ′(θ)

Pθ̂(xt)µ′(θ̂)

1 +
∑
θ 6=θ̂

Pθ(xt))µ′(θ)

Pθ̂(xt)µ′(θ̂)

∣∣∣∣∣∣∣∣ dx
=b

∫
X

∣∣∣∣ Pθ̂(x)

1 + o(1)
+ o(1)−

Pθ̂(x)

1 + o(1)
− o(1)

∣∣∣∣ dx , if and only if θ̂ is SML, by definition;

= 0

a : The Lebesgue’s Dominated Convergence Theorem allows exchanging integral and
limit signs (Williams, 1991).8

• Multiple SML.

Let θ̂ be a SML, note that all models, θ̄ ∈ Θ, that satisfy the condition lim
t→∞

Pθ̄(xt)
Pθ̂(xt) > 0

are also SML and must eventually deliver the same prediction P̄ (x) — because the
limit exists. The result follows substituting P̄ and µ̄ =

∑
µ(θ̄) µ(θ) for Pθ̂ and µ̂ in (b),

respectively.

Proof of Theorem 2

8Let {rt(x)}∞t=1 := {|Pµ′′(x|xt)− Pµ′(x|xt)|}
∞
t=1 and note that |r1|, |r2|... are bounded above.
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Proof. Let θ̂ be the unique argmin
θ∈Θ

D̄(Pθ0 ||Pθ). Thus ∃ε > 0:

∀θ ∈ Θ \ θ̂, D̄(Pθ0 ||Pθ̂) < D̄(Pθ0 ||Pθ)− ε

⇔ ∀θ ∈ Θ \ θ̂, lim
t→∞

1

t
EPθ0

[
ln
Pθ0(xt)

Pθ̂(x
t)

]
− lim
t→∞

1

t
EPθ0

[
ln
Pθ0(xt)

Pθ(xt)

]
< −ε

⇔a ∀θ ∈ Θ \ θ̂, lim
t→∞

EPθ0

[
1

t

t∑
τ=1

EPθ0 (.|xτ−1) ln
Pθ0(.|xτ−1)

Pθ̂(.|xτ−1)
− 1

t

t∑
τ=1

EPθ0 (.|xτ−1) ln
Pθ0(.|xτ−1)

Pθ(.|xτ−1)

]
< −ε

⇔b ∀θ ∈ Θ \ θ̂, lim
t→∞

1

t

t∑
τ=1

ln
Pθ0(xτ |xτ−1)

Pθ̂(xτ |xτ−1)
− lim
t→∞

1

t

t∑
τ=1

ln
Pθ0(xτ |xτ−1)

Pθ(xτ |xτ−1)
< −ε Pθ0 -a.s.

⇒ ∀θ ∈ Θ \ θ̂, lim
t→∞

t∑
τ=1

ln
Pθ(xτ |xτ−1)

Pθ̂(xτ |xτ−1)
= −∞ Pθ0-a.s.

⇔ ∀θ ∈ Θ \ θ̂, lim
t→∞

Pθ(x
t)

Pθ̂(x
t)

= −∞ Pθ0 -a.s.

⇔ θ̂ is SML Pθ0 -a.s.

a) Telescoping the log and using the tower property of expectation.
b) The Strong Law of Large Numbers for Martingale Differences (Williams, 1991) allows sub-
stituting the limit average sum of conditional expected values with the limit average sum of
realized values P -a.s.:

∀θ ∈ Θ lim
t→∞

1

t

t∑
τ=1

(
EPθ0 (.|xτ−1)

[
ln
Pθ0(.|xτ−1)

Pθ(.|xτ−1)

]
− ln

Pθ0(xτ |xτ−1)

Pθ(xτ |xτ−1)

)
= 0 Pθ0-a.s.

Lemma 1. Let µ′ and µ′′ be two prior on Θ, if u is bounded, then L1 convergence of
the posteriors derived from µ′ and µ′′ implies convergence in expected utilities.

lim
t→∞

∫
X

|dPµ′′(x|xt)−dPµ′(x|xt)| = 0⇒ lim
t→∞

[∫
X

u(f(x))dPµ′′(.|xt)−
∫
X

u(f(x))dPµ′(.|xt)
]

= 0

Proof.

lim
t→∞

∫
X

|dPµ′′(x|xt)− dPµ′(x|xt)| = 0

⇒ lim
t→∞

A1
t = lim

t→∞
max
x∈X
|u(f(x))|

∫
X

∣∣dPµ′′(x|xt)− dPµ′(x|xt)∣∣ = 0 because |u(f(x))| <∞;

⇒ lim
t→∞

A2
t = lim

t→∞

∫
X

|u(f(x))|
∣∣dPµ′′(x|xt)− dPµ′(x|xt)∣∣ = 0 because ∀t, A1

t ≥ A2
t ≥ 0;

⇒ lim
t→∞

A3
t = lim

t→∞

∣∣∣∣∫
X

u(f(x))dPµ′′(.|xt)−
∫
X

u(f(x))dPµ′(.|xt)
∣∣∣∣ = 0 because ∀t, A2

t ≥ A3
t ≥ 0;

⇒ lim
t→∞

[∫
X

u(f(x))dPµ′′(.|xt)−
∫
X

u(f(x))dPµ′(.|xt)
]

= 0.
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