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1 Introduction

According to the market selection hypothesis, MSH henceforth, the market rewards the

traders with the most accurate beliefs. This hypothesis, first articulated by Alchian

(1950) and Friedman (1953), is one of the key arguments supporting the efficiency of

financial markets. Under the MSH, markets become efficient because, in the long-run,

it is the accurate traders who control most of the wealth and determine asset prices.

Since Milton Friedman’s work, a number of papers have studied the connection

between the MSH and efficiency. Sandroni (2000) and Blume and Easley (2006) show

that in general equilibrium models with complete markets, bounded aggregate endow-

ment and finitely many traders with time-separable preferences, the MSH holds, and

equilibrium prices eventually reflect the beliefs of the most accurate traders in the

economy. However, there are several models in which the MSH fails, and prices remain

asymptotically inefficient. Negative results hold in partial equilibrium models with a

continuum of traders — Bewley economy — (De Long et al., 1991); in temporal equi-

librium models in which traders optimize on how to allocate consumption but do not

optimize over their savings (Blume and Easley, 1992); in general equilibrium models in

which the aggregate endowment either grows without bound or shrinks to zero (Yan,

2008); and in general equilibrium models with non-recursive preferences (Borovička,

2013; Dindo, 2016).

While these findings suggest that the MSH and asymptotic efficiency are equivalent

concepts, Kogan et al. (2006), Cvitanić and Malamud (2011) and Cvitanić et al. (2012)

demonstrate the opposite. The MSH is not a sufficient condition for market efficiency.

In economies with no intermediate consumption, they show that inaccurate traders that

vanish can have an everlasting effect on equilibrium prices. Provided that inaccurate

traders are overconfident on assets that pay on extremely unlikely events, markets can

remain inefficient even if all inaccurate traders vanish.

In our paper, we prove that the MSH is not necessary for market efficiency. We

present a model in which accurate traders lose all their wealth, luck — which we

properly define in Section 2.2 — is the only force dictating which trader survives, and

markets become efficient in the sense that asymptotic prices of short-lived assets reflect
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correct beliefs.

Our model maintains all the assumptions of Sandroni (2000) and Blume and Easley

(2006) and generalizes their setting by allowing for a continuum of traders who are

indexed by their beliefs. Allowing for a rich heterogeneity in trader beliefs alters some

of the results of the standard model. While markets are asymptotically efficient in both

settings, only with a continuum of agents luck and risk attitudes play a role in traders’

survival, and the MSH can fail. In what follows, we use small economies to refer to

economies with finitely many traders and large economies to indicate economies with

a continuum of traders.

We begin our paper by presenting an example in which the market selects against

traders with correct beliefs, luck is the only determinant of traders’ survival, and

asymptotic equilibrium prices reflect accurate beliefs. Two conditions are necessary

for our result. First, luck can determine survival only if there is a sufficiently rich

heterogeneity in beliefs. Imagine an environment with a continuum of traders who are

incorrect in the sense that every trader concentrates his beliefs on a different set of

paths that individually have a vanishing probability under the correct measure P but

collectively cover the whole set of paths. Then, the group is diverse enough so that for

every path, there is a (lucky) trader that allocates consumption exactly along this path.

Ultimately, it is always one trader from that group that accumulates consumption in

the long-run (a different trader along every path), and thus the group collectively accu-

mulates all consumption in the long-run along every path. Second, in order to generate

this effect, one needs preferences that are sufficiently elastic. The reason is that each

trader believes he is earning a high subjective return on his savings along the partic-

ular paths that he believes are likely. A CRRA parameter smaller than one increases

his chances of survival because it gives him enough incentives to save. Contrary to

Sandroni (2000) and Blume and Easley (2006), the curvature of preferences matters

because although aggregate consumption is bounded, consumption of an infinitesimal

trader can become unbounded — and so, individually, we are in the unbounded setting

of Yan (2008).1

1We are thankful to an anonymous referee for providing this interpretation of our result.
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In the rest of the paper, we develop the formal theory needed to discuss selection in

large economies and to understand our leading example. In the tradition of the selection

literature, we propose a survival index and use it to derive a sufficient condition for a

positive mass of traders (henceforth a cluster of traders) to vanish that applies to both

small and large economies. Our survival index generalizes those found in the literature

by including a new term that captures the effect of risk attitudes on the aggregate

savings of those clusters whose traders have heterogeneous beliefs. Everything else

equal, a cluster whose traders have a higher CRRA parameter vanishes against a cluster

whose traders have a lower CRRA parameter because it has a lower aggregate savings

rate. In Section 6, we provide our main result. Markets become efficient in the sense

that asymptotic prices of short-lived assets reflect correct beliefs whenever there is a

positive mass of traders with correct beliefs. Even in those cases in which the MSH

fails, and traders with correct beliefs vanish against inaccurate traders. There are two

appendices. In Appendix A we reconcile the apparent contrast between the selection

results in small and large economies. Proofs are in Appendix B.

2 A precise definition of luck

2.1 Probabilistic environment

The model is an infinite horizon Arrow-Debreu exchange economy with complete mar-

kets for a unique perishable consumption good. Time is discrete and begins at date

0. At each date, the economy can be in S mutually exclusive states: S = {1, ..., S},

with Cartesian product St = ×tS. The set of all infinite sequences of states, paths, is

S∞ = ×∞S, with representative path σ = (σ1, ...). σ
t = (σ1, ..., σt) denotes the partial

history until period t, C(σt) is the cylinder set with base σt, C(σt) = {σ ∈ S∞|σ =

(σt, . . .)}, Σt is the σ-algebra generated by the cylinders, and Σ is the σ-algebra gener-

ated by their union. By construction, {Σt} is a filtration. Next, we introduce a number

of economic (random) variables with time index t. These variables are adapted to the

filtration Σt.

The true probability measure on (S∞,Σ) is P , while each trader has a subjective,
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possibly incorrect, probabilistic view pi on (S∞,Σ). For any probability measure p on

(S∞,Σ), p(σt|σt−1) is the probability of a generic outcome in period t conditional on

observing history σt−1, while p(σt) is the probability of the cylinder with base σt, that

is p(σt) = p(C(σt)) = p({σ1}× ...×{σt}×S×S× ...). With an abuse of notation, p(σt)

also indicates the likelihood of p on the first t realization of path σ. For example, if

S = {0, 1} and pi is iid Bernoulli (∀t, pi(σt = 1) = i), then pi(σt) =
∏t
τ=1 p

i(στ |στ−1) =

it1(1− i)t0 , where t1 and t0 denote the number of realizations of states 1 and 0 on the

first t realization of path σ, respectively.

2.2 Belief accuracy and luck

Following an established tradition in the selection literature, we rank traders’ accuracy

according to the relative likelihood of their beliefs.2,3

Definition 1. Trader i is more accurate than trader j if lim
t→∞

pi(σt)
pj(σt)

=∞ P -a.s.. He is

as accurate as trader j if lim
t→∞

pi(σt)
pj(σt)

∈ (0,∞) P -a.s.. He is less accurate than trader

j if lim
t→∞

pi(σt)
pj(σt)

= 0 P -a.s..

Because no trader beliefs can be more accurate than the true probability, we say

that a trader has skills if his beliefs are as accurate as the true probability. Otherwise,

he has no skills.

Definition 2. Trader i

• has skills if lim
t→∞

pi(σt)
P (σt) > 0 P -a.s.;

• has no skills if lim
t→∞

pi(σt)
P (σt) = 0 Pa.s..

Our definition of skills does not rule out the possibility of learning. However, a

learning trader is skilled only if he is able to learn the truth quickly. To gain intuition,

2Focusing on beliefs’ likelihood is in the tradition of the selection literature; however, unlike Sandroni
(2000) and Blume and Easley (2006), we cannot rely on approximate measures of it. Our result captures
O (log t) differences between traders’ log likelihood. Sandroni’s definition (average accuracy) is too coarse to
capture these differences because the averaging factor, 1

t , dominates this rate; while Blume-Easley’s definition
can lead to incorrect results when describing such small differences (Massari, 2013, 2017).

3Definitions 1,2 and 3, do not cover the case in which lim
t→∞

pi(σt)
pj(σt) does not exist. This case is left unspecified

because it doesn’t play a role in our results and is potentially distracting.
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it is useful to recall the notions of merging and weak merging (Blackwell and Dubins,

1962; Kalai and Lehrer, 1994). Trader i’s beliefs (weakly) merge with the truth if he

eventually learns the true probability of (events in the near future) tail events, P -a.s..

Because learning the probabilities of tail events is harder than learning the probabilities

of events in the near future, merging implies weak merging but not vice versa (Kalai and

Lehrer, 1994). Definition 2 draws the line between skills and no skills between these

two notions. A trader whose beliefs merge with the truth has skills, while a trader

whose beliefs do not merge with the truth has no skills, even if his beliefs weakly merge

with the truth.

Being skilled is a predetermined characteristic of a trader. It does not depend

on empirical evidence because the likelihood ratio condition must hold on a set of

sequences with true probability 1 to occur rather than on the realized path. We are

interested in skilled traders because they are expected to be more accurate than others

and thus survive (e.g., Sandroni, 2000, Proposition 3). However, traders’ performance

depends on the likelihood their beliefs attach to the realized path, rather than an

abstract notion of accuracy. Our next definition refines the notion of skills by putting

emphasis on empirical evidence.

Definition 3. Trader i is

• empirically accurate on σ if lim
t→∞

pi(σt)
P (σt) > 0 on σ;

• empirically inaccurate on σ if lim
t→∞

pi(σt)
P (σt) = 0 on σ.

Being empirically accurate depends on the path on which the condition is verified.

Unlike skills, empirical accuracy is not a predetermined characteristic of a trader.

The two definitions are similar but not equivalent. Although a trader with skills is

empirically accurate on a set of sequences of true probability 1, there are many paths

in which a trader with no skills is empirically accurate — for example, a measure 1 of

sequences according to the unskilled trader beliefs.

We say that a trader is lucky if he has no skills and is empirically accurate — that

is, if he is empirically accurate against the odds.

Definition 4. Trader i is lucky on path σ if he has no skills and is empirically accurate
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on σ:

lim
t→∞

pi(σt)

P (σt)
= 0 Pa.s. and lim

t→∞

pi(σt)

P (σt)
> 0 on σ.

Our definition of luck is very stringent: it requires an event of zero probability to

occur. Furthermore, because the beliefs of a lucky trader are incorrect P -a.s. luck is

not a sufficient condition for learning.

In small economies, the probability of observing at least one lucky trader is 0

because each unskilled trader has zero true probability to be lucky and the countable

union of zero probability events has probability zero. On the contrary, there are large

economies in which the probability of observing a lucky trader is 1. The set of sequences

in which at least one unskilled trader is empirically accurate can be made large enough

to cover a set of sequences that has true probability 1 because the uncountable union

of zero probability events can have positive probability. Consider the following:

Example 1. Suppose we toss a fair coin t times and that we have 2t traders. Each

trader believes that the coin will deliver a distinct deterministic sequence of length t.

Because the number of possible sequences (2t) and the number of traders coincides,

to every sequence, σt, it corresponds a trader who believes that σt will occur for sure.

That is, for every σ̂t we have a (lucky) trader, î(σ̂t), for which the probability of

obtaining a favorable realization is extremely low, P

{
σt ∈ St : p

î(σt)
P (σt) > 0

}
= 1

2t ; but

whose beliefs attach more likelihood to σ̂t than the true probability does, pî(σ̂t)
P (σ̂t) = 2t.

With t =∞, this belief structure illustrates a setting in which we have a lucky trader

in every sequence.4

3 The leading example

Consider a discrete time Arrow-Debreu exchange economy with two states S = {W,R},

one perishable consumption good, dynamically complete markets and no aggregate risk.

4The belief structure of example 1 is incompatible with the existence of the competitive equilibrium
because it requires too many distinct beliefs — to ensure the existence of the competitive equilibrium we
need the number of beliefs to be an order of magnitudes smaller than the number of sequences (Ostroy, 1984).
The beliefs’ structure we use in the rest of the paper only requires one trader per frequency — a number
that grows polynomially in t — rather than one trader per sequence — a number that grows exponentially
in t.
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There are two sets of traders with positive masses (clusters): AU and AS . Individual

traders, i, can have different beliefs, pi, but share an identical CRRA utility func-

tion (ui(c) = c1−γ−1
1−γ ) with parameter γ < 1 and discount factor β. As usual, every

individual trader in the economy aims to solve:

max
{cit(σ)}∞t=0

Epi

∞∑
t=0

βtui(cit(σ)) s.t.
∑
t=0

∑
σ

qt(σ)
(
cit(σ)− eit(σ))

)
≤ 0.

Where Epi is the expectation according to trader i’s beliefs, cit(σ), eit(σ), and qt(σ) are

trader i’s consumption, his endowment and equilibrium prices (of a unit of consump-

tion) in period t on the sequence of realizations σ, respectively.

For j = U, S, Cjt (σ) =
∫
Aj
cit(σ)di is cluster Aj ’s period t aggregate consumption

on path σ. In the tradition of the selection literature, the asymptotic fate of a cluster

is coarsely characterized by the distinction between those clusters that disappear and

those that do not.

Definition 5. Cluster Aj vanishes on σ if lim
t→∞

Cjt (σ) = 0; it survives on σ if lim sup
t→∞

Cjt (σ) >

0; it dominates on σ if the other cluster vanishes on σ.

The true probability of the states evolves according to the following (Pólya urn)

process PPolya (Pólya, 1930; Mahmoud, 2008). The process starts with an urn con-

taining one White ball (W ) and one Red ball (R). At the beginning of each period,

we randomly select a ball from the urn to determine the state of the economy. The

selected ball is then returned to the urn along with one new ball of the same color.

Traders in AS , skilled traders, are allowed to observe the composition of the urn

before every draw. They have correct beliefs, ∀i ∈ AS , pi = PPolya, and represent a

group of traders with inside information.

Traders in AU , unskilled traders, have heterogeneous iid beliefs about the probabil-

ity of R. The union of unskilled trader beliefs covers the simplex so that, with an abuse

of notation, AU = {i ∈ ΘU = (0, 1)}, where i denotes both trader i and his iid beliefs:

∀t,∀i, pi(Rt) = i. The unskilled cluster collects the different opinions of those traders

who, not having access to private information, never change their beliefs. Because the

composition of the urn changes over time, PPolya is not iid and all traders in AU have
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incorrect beliefs.

Traders’ first-order conditions of the maximization problem are sufficient for the

Pareto Optimum and, in every path σt, can be expressed as
(
cit(σ)

)γ
= (ci0)γ β

tpi(σt)
qt(σ) ,

where pi(σt) is the probability attached by trader i to path σt and ci0 is his time 0

consumption. Rearranging and (Riemann) summing over traders of the same cluster:

Cjt (σ) =

∫
Aj

cit(σ)di = β
t 1
γ

∫
Aj
pi(σt)

1
γ ci0di

qt(σ)
1
γ

. (1)

Exponentiating by γ and taking the ratio of clusters’ aggregate consumption

CSt (σ)γ

CUt (σ)γ
=

(∫
AS
PPolya(σ

t)
1
γ ci0di

)γ(∫
AU

pi(σt)
1
γ ci0di

)γ =
PPolya(σ

t)
(∫

AS
ci0di

)γ(∫
AU

pi(σt)
1
γ ci0di

)γ . (2)

By De-Finetti’s Theorem (Corollary 2) ∀σ, ∀t, PPolya(σt) =
∫ 1

0 p
i(σt)di. Thus,

Lemma 2 implies that Equation 2 converges to 0 with probability arbitrarily close

to 1. That is, the skilled cluster vanishes5 and the MSH fails.

This example can be fairly surprising at first glance. All the skilled traders have

correct beliefs, all the unskilled traders have incorrect beliefs and yet skilled traders

vanish. Next, we give an informal preview of the results. These intuitions are demon-

strated and further discussed in the remainder of the paper.

3.1 The role played by risk attitudes

Risk attitudes affect cluster survival because of cluster AU ’s belief heterogeneity. If all

traders in AU had identical and incorrect beliefs (as for small economies), their beliefs

could be taken out of the integral in Equation 2; the consumption ratio between the

two clusters would be proportional to the likelihood ratio between cluster beliefs; and

risk attitudes would not affect cluster survival. The skilled cluster would dominate

5Because the aggregate endowment is bounded
(
CSt (σ)

CUt (σ)

)γ
→ 0⇒ CSt (σ)→ 0.
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because it is more accurate than the unskilled cluster.

However, because unskilled traders do not have identical beliefs, the right-hand

side of Equation 2 does not represent the ratio between two probabilities. Specifically,

Corollary 1 and a standard implication of De Finetti’s Theorem (Corollary 2) allow us

to express Equation 2 in this more informative way:

CSt (σ)γ

CUt (σ)γ
=
PPolya(σ

t)
(∫

AS
ci0di

)γ(∫
AU

pi(σt)
1
γ ci0di

)γ =
PPolya(σ

t)βt
(∫

AS
ci0di

)γ
PPolya(σt) ∗ βte−

γ−1
2

ln t+O(1)
. (3)

Ignoring constant quantities, the numerator is proportional to the product of the true

probability of σt and the discount factor βt. The denominator has an aggregate prob-

ability term, PPolya(σ
t), which coincides with the true probability of σt, and an aggre-

gate discount factor term, βt ∗ e−
γ−1

2
ln t, which also depends on cluster AU ’s CRRA

parameter. The comparison of cluster probability terms reveals that a Wisdom of the

Crowd effect has emerged. Although all unskilled traders have incorrect beliefs, they

collectively behave as if they had correct beliefs. Accordingly, the asymptotic fate of

the two clusters is uniquely determined by their aggregate discount factor. With γ < 1,

Equation 3 implies that the unskilled cluster has a higher savings rate than the skilled

cluster. The unskilled cluster dominates because its aggregate beliefs are identical to

the skilled cluster’s and it saves more.

3.2 Who dominates?

Equation 3 shows that both clusters have equivalent aggregate beliefs and that clus-

ter selection solely depends on the effect of unskilled traders’ risk attitudes on their

aggregate discount factor. However, it is not informative enough to indicate how con-

sumption shares are eventually distributed among unskilled traders. In Section 5.3 we

demonstrate that, within members of the unskilled cluster that dominates, the selec-

tion forces favor lucky traders. That is, those traders whose iid beliefs coincide with

the empirical frequency of R. The intuition goes as follows:

It is known (De Finetti, 1937, ’s Theorem) that ∀σ, ∀t, PPolya(σt) =
∫ 1

0 p
i(σt)di.

This means that the Pólya urn process produces probabilities that are equivalent,

10



in distribution, to the probabilities obtained via this two-step process. In the first

step, Nature randomizes according to a Uniform distribution on (0,1) to decide the

probability of Red: p(R). In the second step, Nature uses p(R) to generate an iid

sequence of length t. Skilled traders have skills because they know that Nature is

choosing p(R) at random according to a Uniform distribution — lim
t→∞

PPolya(σt)
PPolya(σt) =

1 PPolya-a.s.. Unskilled traders have no skills because each unskilled trader believes that

there is a unique possible probability pi(R) = i and, according to the randomization

performed by Nature in the first step, each i ∈ (0, 1) has 0 probability to be the realized

value of p(R) — ∀i ∈ AU , P1ststep ({p(R) = i}) = 0 ⇒ lim
t→∞

pi(σt)
PPolya(σt) = 0 PPolya-a.s..

However, the union of unskilled trader beliefs covers the entire simplex. Thus, for every

possible realization of p(R), there is a (lucky) unskilled trader, î, whose belief coincides

with p(R). Among unskilled traders, the market selects for î because, conditional on

p(R) = î, î is the only accurate trader in the economy.6

3.3 Do markets become asymptotically efficient?

Markets do become asymptotically efficient: the asymptotic equilibrium prices of the

short-lived asset in a large homogeneous discount factor economy with a positive mass

of skilled traders reflect correct beliefs even when the market selects against all skilled

traders (Section 6). In our leading example, the intuition goes as follows: by standard

economic arguments, as the consumption share of lucky traders approaches 1, the

equilibrium prices of the short-lived assets converge to their discounted beliefs. The

result follows by noticing that as the number of trading periods increases, the number

of balls in the urn also increases, making the composition of the urn more stable.

Asymptotically, the effect of one extra ball per period becomes negligible, and the Pólya

urn process is indistinguishable from iid extractions from an urn whose composition

coincides with the empirical frequency (i.e., the beliefs of the lucky trader).

6Assuming an exchangeable non-iid process (such as the Pólya urn described) plays a fundamental role
in identifying luck at a theoretical level. If the true parameter were constant, it would be impossible to
distinguish a trader who uses the correct parameter by chance from a trader who truly knows the true
parameter. By contrast, in the Pólya urn described, there is no room for confusion. A trader with correct
beliefs knows the true parameter in every period, while a trader is lucky if he incorrectly believes the true
parameter to be constant and, by chance, his iid beliefs coincide with the realized frequency of Red balls.
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This result holds in general. If there is a positive mass of traders with correct

beliefs and the MSH holds, the market becomes efficient by standard arguments in

market selection (Sandroni, 2000). Otherwise, in Section 5.4 we show that violations

of the MSH can occur only if the economy has a large number of traders, preferences

are elastic enough, and the data-generating process is such that the true maximum-

likelihood parameter is a random variable with continuum support. That is, markets

can select against accurate traders only in those cases in which Nature can be thought

of as choosing its parameters at random. We prove that, in all these cases, the next

period beliefs of the lucky trader and the truth becomes indistinguishable.

This result does not apply to the setting of example 1 — which violates assumptions

C3 and A4 of sections 4.1 and 4.2, respectively. For instance, it is easy to verify that

the lucky trader’s beliefs never converge to the true probability: ∀t, ||P (σt)−pî(σt)||2 =√
(1

2 − 1)2 + (1
2 − 0)2 =

√
1
2 > 0. The reason is technical: the space of all binary series

with the sup norm has too many distinct elements — it is not separable. Therefore,

the competitive equilibrium does not exist because there is no orthonormal basis for

the space of consumption (Ostroy, 1984). Back to our interpretation, our result does

not hold with a belief structure like example 1 because Nature cannot be thought of as

randomizing among the set of distinct infinite paths since this space is not a Lebesgue

space.

4 The general model

4.1 The traders in the economy

In this section, we formally describe the space of traders. The economy is characterized

by the aggregate preferences �j and by the aggregate time 0 consumption Cj0 of N

measurable sets of traders, clusters Aj , j = 1, ..., N . Where �j and Cj0 are constructed,

respectively, by aggregating the preferences and the initial consumptions of a positive

mass of atomless traders i with beliefs pi, utilities ui, endowment processes eit(σ), and

infinitesimal time 0 consumption ci0. We assume that trader beliefs are parametric.

The set of cluster j’s beliefs and the set of parameters that characterize it are Mj :=
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{pi : i ∈ Aj} and Θj := {i ∈ Θ}, respectively.

Definition 6. A cluster, Aj, is a measurable set of traders such that:

C1: cluster Aj has strictly positive time 0 consumption: Cj0 =
∫
Aj
ci0di > 0;

C2: traders in Aj have an identical discount factor βj ∈ (0, 1) and an identical CRRA

utility function with parameter γj: ∀i ∈ Aj , ui(c) = c1−γj−1
1−γj ;

C3: either (i) all traders in Aj have identical beliefs, or (ii) all beliefs in Mj are

Multinomial with the same inter-temporal structure (either iid or Markov with

finitely many lags) and Θj is the whole simplex.

C1 requires the initial consumption of each cluster to be strictly positive. We ignore

subsets of traders whose initial consumption is zero because they cannot affect any

equilibrium quantity. C2 delivers an analytical form for clusters’ optimal consumption

decisions as a function of its discount factor, risk attitudes, and aggregate beliefs. C3

disciplines clusters’ aggregate beliefs. Either all traders in a cluster are identical and

can be treated as a representative trader with positive mass — by (i) and C2 — ; or,

by (ii), it provides enough structure for constructing an asymptotic approximation of

clusters’ optimal investment strategies (Lemma 2).7

The heterogeneity of opinion among traders of the same cluster is captured by the

Lebesgue dimensionality of the cluster parameter set, Θj . Lemma 2 shows that the

dimensionality of Θj interacts with cluster risk attitudes to determine survival. In

the rest of the paper we use cluster dimensionality to refer to the dimensionality of

Θj . This use is justified by the fact that the topological properties of a cluster of

traders (Aj ,Aj , i) and those of the space of its parameters (Θj ,Bj , i) coincide: each

trader is uniquely identified by his beliefs which are uniquely identified by a vector

of parameters. This observation allows us to use Aj and Θj interchangeably as the

domain of integration.8

7This assumption can be generalized to include the case of Bayesian traders with identical support but
different priors. We discuss this case in Appendix ??.

8To familiarize with our construction, consider the following examples. Let S = {W,R}. A cluster AB of
traders with iid Bernoulli beliefs has Lebesgue dimensionality one because the set characterizing its trader
beliefs is uniquely described by parameters in the one dimensional simplex: MB = {pi : ∀t, pi(Wt) = i, i ∈
Θj} with ΘB = {i ∈ (0, 1)}. A cluster AM of traders with Markov (1) Bernoulli beliefs has Lebesgue
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Finally, a special role in our condition for a cluster to vanish will be played by the

trader in the cluster whose beliefs have the highest likelihood on σt.

Definition 7. Trader îj(σ
t) is the maximum-likelihood trader in Aj at σt if:

îj(σ
t) = arg sup

i∈Θj

pi(σt).

4.2 The assumptions

Throughout the paper, we maintain the following assumptions:

A1: All trader utilities are CRRA: ∀i ∈
N⋃
j=1

Aj , u
i(c) = c1−γ

i−1
1−γi with γi ∈ (0,∞).

A2: The aggregate endowment is, in every period, strictly positive and bounded above.

A3: For all traders h, i, all dates t and all paths σ, ph(σt) > 0⇔ pi(σt) > 0.

A4: For every cluster, j, satisfying C3 (ii), ci0 is a differentiable and strictly positive

function of i, for every i in the interior of Θj .

Assumptions A1-A3 are standard in the selection literature. If the traders in the

economy can be organized into finitely many clusters with identical beliefs, the econ-

omy is formally equivalent to a small economy and Assumptions A1-A3 are implied

by Sandroni (2000) and Blume and Easley (2006). Assumption A4 is a smoothness

assumption needed for technical reasons.9 A competitive equilibrium is a sequence of

state prices {qt(σ)}∞t=0 and, for each cluster Aj , a sequence of consumption choices

{Cjt (σ)}∞t=0 that is affordable, preference maximal on the budget set, and mutually

feasible: ∀σ, ∀t,
N∑
j=1

∫
i∈Aj

eit(σ)di =
N∑
j=1

∫
i∈Aj

cit(σ)di. The existence of the competitive

equilibrium follows from Ostroy (1984) existence theorem. We omit the proof because

it is notationally intensive and tangential to the main contribution of our paper.

dimensionality two because the set characterizing its trader beliefs is uniquely described by parameters in a
two dimensional simplex: MM = {pi : ∀t, pi(Wt|Wt−1) = i′, pi(Wt|Rt−1) = i′′, i ∈ ΘM}, with ΘM = {i :=
[i′; i′′] ∈ (0, 1)× (0, 1)}.

9Because the second welfare theorem applies, we can think of A4 as being an assumption on the Pareto
weight distribution of the Social Planner (exogenous quantities), rather than an assumption on time 0 equi-
librium consumption shares (endogenous quantities). Because for every Social Planner Problems satisfying
A4 there is a sequence of endowments such that the equilibrium time 0 consumption shares satisfy A4, there
are many competitive equilibria satisfying this property.
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4.3 The reference economy

The economy is a discrete time Arrow-Debreu exchange economy with complete mar-

kets, bounded aggregate endowment, S states, and N clusters Aj , j = 1, ..., N . Every

individual trader in the economy aims to solve:

max
{cit(σ)}∞t=0

Epi

∞∑
t=0

βtju
i(cit(σ)) s.t.

∑
t=0

∑
σ

qt(σ)
(
cit(σ)− eit(σ))

)
≤ 0.

Traders’ first-order conditions of the maximization problem are sufficient for the Pareto

Optimum and, in every path σt, can be expressed as
(
cit(σ)

)γj = (ci0)γj β
tpi(σt)
qt(σ) . Re-

arranging and (Riemann) summing over traders of the same cluster,
∫
Aj
cit(σ)di =

β
t
γj

j

∫
Aj

pi(σt)
1
γj ci0di

qt(σ)
1
γj

. Exponentiating both sides by the CRRA parameter and taking the

ratio of clusters’ risk-adjusted consumption, prices simplify out:

Cjt (σ)γj

Ckt (σ)γk
=

βtj

(∫
Aj
ci0p

i(σt)
1
γj di

)γj
βtk

(∫
Ak
ci0p

i(σt)
1
γk di

)γk . (4)

The following Lemma uses standard arguments in the selection literature to show

that Equation 4 is the fundamental quantity to determine which cluster vanishes.

Lemma 1. Under A1-A4, Aj vanishes on σ if exists Ak:
βtj

(∫
Aj

ci0p
i(σt)

1
γj di

)γj
βtk

(∫
Ak

ci0p
i(σt)

1
γk di

)γk → 0.

Proof. By A2, Ckt (σ)γk <∞ ∀k, ∀σt. Thus by Equation 4,∀γj , γk ∈ (0,∞)

Cjt (σ)γj

Ckt (σ)γk
=

βtj

(∫
Aj
pi(σt)

1
γj ci0di

)γj
βtk

(∫
Ak
pi(σt)

1
γk ci0di

)γk → 0⇔ Cjt (σ)→ 0.

Lemma 1 demonstrates that it is the ratio of risk-adjusted aggregate beliefs that

determines cluster survival rather than the ratio of cluster aggregate beliefs. The

distinction between risk-adjusted and not risk-adjusted aggregate beliefs is nihil in
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small economies because for clusters with homogeneous beliefs, the common belief can

be factored out of the integral.

4.4 Technical contribution

Our main technical contribution is to provide an approximation of Equation 4. We

show that the distinction between risk-adjusted and non-risk-adjusted aggregate beliefs

does affect cluster survival in large economies. Our approximation can be seen as a

generalization of a fundamental result about Bayesian accuracy, the BIC approximation

(Schwarz, 1978; Clarke and Barron, 1990; Ploberger and Phillips, 2003; Grünwald,

2007). To formally state this result we need some definitions.

Definition 8. Let M be a member of the exponential family parametrized by Θ.

• Let Θ0 ⊂ Θ. We say that Θ0 is regular if

– the interior of Θ0 is nonempty;

– the closure of Θ0 is a compact subset of the interior of Θ.

• A sequence, σ, is Θ0-regular if the maximum-likelihood parameter î(σt) exists, is

unique, and it belongs to the regular set Θ0 for all large t.

• Ŝ is the set of all Θ0-regular sequences.

• A prior is Θ0-regular if it is continuous and strictly positive in Θ0

BIC approximation, Grünwald (2007). Let M be a member of the exponential

family parametrized by Θ, Θ0 be a regular subset of Θ and pB(σt) be the Bayesian

likelihood obtained from a Θ0-regular prior; then,10

∀σ ∈ Ŝ, pB(σt) =

∫
Θ
pi(σt)gidi = eln pî(σ

t)(σt)− k
BIC

2
ln t+O(1).

Where kBIC is the Lebesgue dimensionality of Θ.

The BIC approximation shows that the likelihood of the probabilities obtained via

Bayes’ rule depends on the dimensionality of the prior support (i.e., on the number of

10In standard Bayesian notation,
∫

Θ
pi(σt)gidi would be expressed as

∫
Θ
p(σt|θ)g(θ)dθ.
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parameters that need to be learned). It formalizes the intuition that there is a likelihood

cost in using models with redundant parameters because some of the information is

“wasted” on learning that the true value of these parameters is zero.11

Lemma 2 obtains a similar approximation for risk-adjusted aggregate beliefs.

Lemma 2. Under A1-A4, let Mj be the beliefs set of cluster j, and Θj,0 be a regular

subset of Θj, then cluster j’s risk-adjusted beliefs satisfies:

∀σ ∈ Ŝj ,

(∫
Θj

pi(σt)
1
γj ci0di

)γj
= eln pî(σ

t)(σt)−
γjk

MAR
j
2

ln t+O(1).

Where kMAR
j and γj are cluster j’s dimensionality and CRRA parameter, respectively.

Proof. See Appendix B

When γ = 1 (log), Lemma 2 coincides with the BIC approximation. However, for

γ 6= 1 and kMAR > 0, Lemma 2 demonstrates that risk-adjusted aggregate probabil-

ities are not mutually absolutely continuous with respect to their non-risk-adjusted

counterparts. In particular, for γ < η, Lemma 2 implies that the ratio of the γ-risk-

adjusted aggregate beliefs and the η-risk-adjusted aggregate beliefs diverges in every

sequence. In economic terms, cluster γ has a higher savings rate than cluster η, thus

it dominates.

Importantly, the BIC approximation and Lemma 2 do not depend on the true

data-generating process. They hold, more generally, on every sequence in which the

maximum-likelihood parameter (conditional on the model class Mj) lies in a well-

behaved subset of the parameter space for all large t: Ŝ. Under C3 (ii), this set

includes almost all paths. For example, for the Multinomial (Markov) iid class with

parameters covering the simplex, Ŝ contains the set of all sequences whose limsup and

liminf of the (conditional) frequencies of events belong to the interior of the simplex.

11A classical example is the following.
Suppose the true probability is iid Bernoulli with parameter P . There are two Bayesian traders (B1, B2);
B1 has a smooth prior on the Bernoulli family (1 parameter: kBIC1 = 1) and B2 has a smooth prior on
the Markov (1) family (2 parameters: kBIC2 = 2). Since every iid model is also Markov 1, the next period
forecasts of both traders converge to the true probability. Nevertheless, application of the BIC approximation
reveals that B1’s beliefs are empirically more accurate than B2’s.
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In particular, P ({Ŝj}) = 1 for every measure P that does not eventually attach a

(conditional) probability zero to one of the outcomes.

The approximation of Lemma 2 also holds when kBICj and kMAR
j = 0, respectively,

which shows that in small economies risk-adjusted probabilities are mutually absolutely

continuous with their non-risk-adjusted counterparts and risk attitudes have no effect

on survival. Moreover, for this case, Ŝj is the set of all paths.

5 Main result

We are now ready to present a general condition for a cluster to vanish that only

depends on exogenous quantities. In the tradition of the selection literature, we assign

to every cluster a survival index. The asymptotic fate of each cluster can be determined

by pairwise comparison of these indexes.

Definition 9. Cluster’s Aj survival index is

sj = t lnβj +

[
ln p

î(σt)
j (σt)−

kBICj

2
ln t

]
−
γjk

MAR
j

2
ln t.

The survival index has four terms: The first three terms are standard in the selection

literature: t lnβj is a cluster’s discount factor.

[
ln p

î(σt)
j (σt)− kBICj

2 ln t

]
represents the

empirical accuracy of the most accurate trader in the cluster. Specifically, ln p
î(σt)
j (σt)

is the most accurate trader likelihood and kBICj is the BIC dimensionality term —

it equals zero unless traders in Aj are Bayesian traders with kBIC-dimensional prior

support of positive Lebesgue measure. The last term,
γjk

MAR
j

2 ln t, is new and only

appears in the large economy setting. It captures the effect of risk attitudes and

dimensionality on each cluster saving decisions. This term is absent in small economies

because kMAR
j is zero in homogeneous belief clusters. The survival indexes determine

cluster survival as follows:

Proposition 1. Under A1-A4, cluster Aj vanishes on Ŝj ∩ Ŝk if there is a cluster Ak

such that sj − sk → −∞.

Proof. Application of Lemma.1 using Lem.2 and BIC to approximate the RHS of Eq.4.
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Proposition 1 links cluster survival to the four components of its survival index.

Keeping the other three components equal, differences in the first component indicate

that the least patient cluster vanishes. Differences in the second component indi-

cate that a cluster vanishes if its maximum-likelihood trader (parameter choice if it

is a Bayesian cluster) is less accurate than the maximum-likelihood trader (parameter

choice) of another cluster. Differences in the third component indicate that, given two

Bayesian clusters whose support contains the true probability, the cluster that has to

estimate more parameters vanishes (as per Theorem 6 in Blume and Easley, 2006).

And differences in the last component indicate that the cluster with the lowest γjk

term dominates because it saves more.

These four components have different intensities. The first two components diverge

at rate t, while the last two diverge at rate O(1) ln t. Thus, differences in the first two

components always dominate differences in the other components.12 Therefore, if all

traders have an identical discount factor, the leading term of the survival indexes is

the one capturing the empirical accuracy: the market selects for empirically accurate

traders. For the cases in which there is more than one cluster with the most empirically

accurate parameter-choice/trader, our condition highlights that risk attitudes can affect

survival not only via direct comparison of the last term of the survival indexes (Section

5.1) but also via the interaction between its third and last components (Section 5.2).

This interaction can be responsible for failures of the MSH.

In the next sections, we discuss specific implications of Proposition 1. Because the

first two components of the survival index are well understood, we focus on economies

in which only the last two components differ; i.e., economies in which all clusters have

a homogeneous discount factor and the same maximum-likelihood trader/parameter.

Definition 10. An economy is HDF if ∀i ∈ A, βi = β ∈ (0, 1).

12Differences in the second two components would disappear if we were to use an average measure of
accuracy as in Sandroni (2000) because they would be dominated by the 1

t term.
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5.1 The role of risk attitudes

To highlight the effect of risk attitudes on cluster survival, we start with the simple

case in which clusters differ only in their risk attitudes.

Proposition 2. In an HDF economy that satisfies A1-A4 with N clusters with iden-

tical belief sets, Θ, with kMAR > 0, the least risk-averse cluster dominates on Ŝ.13

Proof. γj < γk ⇒ sk − sj → −∞⇒ByTh.1 k vanishes.

Example 2. Consider an Arrow-Debreu exchange economy with two states S =

{W,R}. The economy contains two clusters, Aγ and Aη, with an identical discount

factor β but different risk attitudes γ < η. All traders have iid Bernoulli beliefs so

that Θη = Θγ = {i ∈ (0, 1)} and kMAR
η = kMAR

γ = 1. It follows that: sη − sγ =

γ
2 ln t− η

2 ln t→ −∞, and, by Proposition 1, the most risk averse cluster, Aη, vanishes.

Because Aγ and Aη have an identical beliefs set, Example 2 highlights that risk atti-

tudes affect cluster survival through their impact on cluster savings rate. In the CRRA

utility specification, the CRRA parameter captures both trader attitudes toward risk

and their attitudes toward inter-temporal consumption. Everything else equal, a low

CRRA parameter increases the survival chances of a cluster because it gives to its

empirically most accurate traders higher incentives to save.

Corollary 1 decomposes the optimal consumption plans of clusters into their aggre-

gate belief and aggregate discount factor (saving) components:

Corollary 1. Under A1-A4, cluster Aj’s risk-adjusted aggregate beliefs satisfies:

βtj

(∫
Aj

pi(σt)
1
γj ci0di

)γj
=

[∫
Aj

pi(σt)di

]
∗

βtj ∗ e−
(
γjk

MAR−kMAR

2

)
ln t+O(1)

 .
Proof. See Appendix B.

The first component represents cluster aggregate beliefs; the second expresses clus-

ter aggregate discount factor.

13Where Ŝ = ∩j∈N Ŝj = Ŝj for j = 1, ..., N , because all clusters have the same belief support.
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The effect of risk attitudes on aggregate savings can be better understood by focus-

ing on the recursive version of this competitive equilibrium. Because of the law of one

price, in every period most traders subjectively believe that assets are mispriced and

trade for speculative reasons. If traders have log utility (γ = 1), prices do not affect

optimal investment choices and aggregation does not affect cluster aggregate savings

rate. Cluster’s optimal choices can be equivalently modeled as those of a representa-

tive trader with positive mass, discount factor β, and whose beliefs coincide with the

consumption-share-weighted average of trader beliefs within the cluster (Rubinstein,

1974). However, if γ < (>)1, the substitution effect is stronger (weaker) than the

income effect and each member of the cluster optimally chooses to invest more (less)

aggressively than if they had log utility. Because investing is the only way to save in

this economy, this translates into a representative agent with a higher savings rate.

Contrary to Sandroni (2000) and Blume and Easley (2006), the curvature of prefer-

ences matters because although aggregate consumption is bounded, consumption of an

infinitesimal trader can become unbounded. At an infinitesimal level, a large economy

can be thought of as a growing economy, and our results are qualitatively similar to

Yan (2008)’s findings in large economies.

5.2 The role of heterogeneity of opinions

In this section, we analyze survival in economies which contain some clusters with

heterogeneous beliefs and some clusters with identical Bayesian traders. We show that

cluster beliefs dimensionality and risk attitudes ,γjk
MAR
j , have an effect on cluster

survival which is of the same order as that of belief dimensionality for a Bayesian

cluster, kBICB . Therefore they can offset each other.

Proposition 3. Under A1-A4, if the economy is HDF and only contains two clusters

— AU , whose traders have heterogeneous beliefs, and AB, whose traders are Bayesian
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with identical, regular prior distribution on ΘU — then:

i) γU ∈ (0, 1)⇔ cluster AB vanishes, ∀σ ∈ Ŝ

ii) γU = 1⇔ cluster AB survives but does not dominate, ∀σ ∈ Ŝ

iii) γU ∈ (1,∞)⇔ cluster AB dominates, ∀σ ∈ Ŝ.

Proof. Application of Proposition 1 by noticing that sU − sB = 1
2 (kBICB − γ

U
kMAR
U ) ln t.

Example 3. Consider an Arrow-Debreu exchange economy with two states S =

{W,R}. There are two clusters, AU and AB, with identical risk attitudes γ and

discount factor β. Traders in AU have heterogeneous Bernoulli beliefs pi such that

ΘU = {i ∈ (0, 1)} (i.e., kMAR
U =1, kBICU =0 ), while traders in AB have identical

beliefs pB which are obtained via Bayes’ rule from a regular prior distribution on

ΘB = (0, 1) (i.e., kMAR
U =0, kBICU =1 ). The result follows as an application of Proposi-

tion 1: ∀σ ∈ Ŝ, sB − sU =
γkMAR
U
2 ln t− kBICB

2 ln t→


0 if γ ∈ (0, 1)

r ∈ (0,∞) if γ = 1

∞ if γ ∈ (1,∞)

.

The CRRA parameter does not affect the long-run aggregate savings of the Bayesian

cluster because eventually all Bayesian traders agree with the probability implicit in

equilibrium prices and use the market exclusively to smooth consumption rather than

speculate. On the other hand, traders in AU never learn the truth and have speculative

incentives to trade. For γ < 1, the lucky trader — and a shrinking measure of traders

with parameters around him (Bt ∈ AU ) — saves more on the realized path than a

log trader would — as Yan (2008) result for growing economies. While those traders

whose beliefs are outside Bt save less than what a log trader would save, because they

are investing more consumption on paths that do not realize — as Yan (2008) result

for shrinking economies. Proposition 1 ensures that, at the aggregate level, the former

effect dominates the latter: the aggregate savings rate of cluster AU is higher than that

of cluster AB.

Our motivation for studying large economies is to depart from the strong homo-

geneity assumptions implicit in the small economy setting. It could be argued that
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requiring all Bayesian traders to share a common prior is inconsistent with the stated

goal. The next lemma allows to generalize Proposition 3 to clusters in which traders

have different (regular) priors over the same support. In the spirit of Aumann (1976)

and Geanakoplos and Polemarchakis (1982), Lemma 3 shows that that the dimension-

ality term of a positive mass of Bayesian traders with a heterogeneous regular priors

on the same support equals 0 (kMAR
Bayesian = 0) because Bayesian traders with the same

prior support do not disagree forever.

Lemma 3. A positive mass of Bayesian traders with heterogeneous, regular priors on

a common parameter support, Θ, can be treated as a cluster of Bayesian traders with

an identical, regular prior on Θ.

Proof. See Appendix B.

5.3 The role of the true probability

In Proposition 3, we make a comparison between a cluster of Bayesian traders and a

cluster of traders with heterogeneous iid beliefs. The result holds in every path in Ŝ.

Therefore, it does not depend on the true data-generating process. If we assume the

true probability coincides with the beliefs of the Bayesian cluster, we have an economy

in which all traders in AB have correct beliefs and yet for γ < 1 cluster AB vanishes:

the MSH fails, and luck is the sole determinant of trader survival.

Proposition 4. Under the assumption of Proposition 3, if we further assume that

P = pB and γU < 1, then, with a probability arbitrarily close to 1, the MSH fails and

luck is the sole determinant of trader survival.

Proof. See Appendix B.

But what does it mean that the true probability coincides with the probability

obtained via Bayes’ rule? It is well known that the Pólya urn process in the leading

example of page 8 satisfies this requirement (De Finetti, 1937):

Corollary 2. The probability attached by the Pólya urn process in the leading example,

PPolya, coincides in every path with the probability obtained by Bayes’ rule from a
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Uniform prior on the unit simplex of the Bernoulli iid family, pB:

∀σ, ∀t, PPolya(σt) =

∫ 1

0
pi(σt)di = pB(σt)

Proof. Standard application of De Finetti’s Theorem (e.g., Mahmoud, 2008, pg.30).

Similar examples can be constructed as long as the true data-generating process is

exchangeable but not iid. Where exchangeable means that the true data-generating

process is such that the probability of finite sequences does not depend on the order of

the realizations.

Definition 11. An infinite sequence of realizations σ∞ is exchangeable if, for every

finite t, P (σ1, ..., σt) = P (σπ(1), ..., σπ(t)) for any permutation π of the indexes.

From the Definition 11 it follows that every sequence of iid random variables, con-

ditional on some underlying distributional form, is exchangeable. De Finetti (1937)’s

Theorem gives us a partially converse statement: every infinite exchangeable sequence

can be characterized as a mixture of iid sequences. That is, every sequence of ex-

changeable random variable has a representation of the form: p(σt) =
∫

Θ p
i(σt)gidi;

where the pi represents iid probability measures and gi is the weight assigned to each

model. Interpreting gi as a prior distribution in the Bayesian sense, this representation

implies that to every Bayesian model (with obvious generalization to a non-iid setting)

it corresponds an exchangeable (conditionally exchangeable) model and vice versa.

In the words of Kreps (1988): “...exchangeability is the same as ‘independent and

identically distributed with a prior unknown distribution function’...”.

In the leading example, skilled traders have rational expectations because they know

the “unknown” distribution function.

These observations can be used to construct other examples in which the MSH fails

and luck is the sole determinant of trader survival.

Example 4. Consider an Arrow-Debreu exchange economy with two states S =

{W,R}. The true probability P evolves according to the same Pólya urn process we

used for our leading example. There are two clusters, AS and AU , with am identical

discount factor β. Traders in AS , skilled traders, are Bayesian with Uniform prior on
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ΘS = (0, 1) (kBICS = 1); so that, by Corollary 2, P = pB. Traders in AU , unskilled

traders, have heterogeneous Markov 1 beliefs pi such that ΘU = {i ∈ (0, 1)2}. Note

that kMAR = 2 (the Markov 1 model has two parameters to be estimated: p(W |R) and

p(R|R)) and ΘS ⊂ ΘU — the Bernoulli model is nested in the Markov 1 model. It is

easy to verify that sS − sU =
(
−kBICS

2 +
γUk

MAR
U
2

)
ln t =

(
−1

2 + γU
)

ln t, thus, if γ < 1
2 ,

skilled traders vanish, the MSH fails, and a lucky trader dominates.

In Example 4, a smaller value of γ is needed than in the leading example to de-

termine a failure of the MSH. This reflects the intuition that a qualitatively equal

amount of aggregate consumption needs to be shared between a qualitatively larger set

of traders in a Markov 1 cluster (kMAR
M1 = 2) rather than an iid cluster (kMAR

IID = 1).

Accordingly, the lucky trader in the Markov cluster must be given more incentives to

save than the lucky trader in the iid cluster because he gets a smaller infinitesimal

share of the cluster’s initial consumption.

5.4 Necessary conditions for a violation of the MSH

We presented two examples in which the MSH fails. The examples have three elements

in common: a large number of traders, preferences that are elastic enough, and a

data-generating process such that the true maximum-likelihood parameter is a random

variable with continuum support. All these requirements are necessary for a violation

of the MSH.

Proposition 5. In an HDF economy that satisfies A1-A4, if a skilled cluster AS

vanishes P -a.s then:

a) at least one cluster, Aj, has heterogeneous traders;

b) cluster Aj’s trader preferences are elastic enough: γj ≤ 1;

c) the true maximum-likelihood parameter is a random variable with continuum sup-

port. That is, kBICP > 0.

Proof. See Appendix B.

A large number of traders is necessary because luck can occur only if there is

enough heterogeneity in trader beliefs; otherwise we are in the small economy setting
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of Sandroni (2000) and Blume and Easley (2006) in which skilled clusters survive P -

a.s.. Preferences that are elastic enough are necessary to give the lucky traders in Aj

enough incentive to save (as per Proposition 3). Condition c) is necessary for Aj ’s sur-

vival index to be higher than that of skilled cluster’s, AS . If the maximum-likelihood

parameters of the true data-generating process were either constants or random vari-

ables with finite support, then AS must have maximal survival index because both its

BIC and MAR components equal 0.

6 Markets are asymptotically efficient

In this section, we give formal proof for what is stated in the leading example. The

prices of short-period assets reflect correct beliefs whenever there is a skilled cluster.

Proposition 6. In an HDF economy that satisfies A1-A4, if there is a cluster of

traders with correct beliefs, asymptotic prices are efficient: the prices of short-lived

assets converge to the discounted, risk-adjusted beliefs of a trader with correct beliefs.

∀σ ∈ Ŝ,

∥∥∥∥∥q(σt|σt−1)− uî(σ
t−1)(c

î(σt)
t )′

uî(σt−1)(c
î(σt)
t )′

βP (σt|σt−1)

∥∥∥∥∥
∞

→ 0.

Where q(σt|σt) = qt(σ)
qt−1(σ) is the price to move a unit of consumption from date/event

σt−1 to date event σt and ‖.‖∞ is the sup norm.

Proof. See Appendix B.

For the usual case in which the MSH holds, and the skilled cluster dominates, the

result follows from standard economic arguments (Sandroni, 2000). More interesting

is the observation that markets become efficient even if the MSH fails and the skilled

cluster vanishes. The result is implied by four intuitive claims: first, a cluster that

vanishes does not affect next-period equilibrium prices, as per Sandroni (2000). Sec-

ond, among traders of the dominating cluster, consumption-shares concentrate around

the lucky trader (Proposition 5.3). Third, the beliefs of non-lucky traders do not affect

equilibrium prices. And fourth, the beliefs of the lucky trader are eventually accurate,
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because the leading component of the survival index is empirical accuracy and lucky

traders are competing against a skilled cluster. Moreover, under the smoothness en-

sured by C3 and A4, the empirically accurate beliefs must weakly merge with the true

probability.14

7 Conclusions

This paper extends the work started by Sandroni (2000) and Blume and Easley (2006)

on market selection to the large economy setting. Our generalization alters some of the

basic implications of their model: in large economies, risk attitudes do affect trader

survival and the MSH can fail. We provide a formal definition of luck and show that risk

attitudes determine whether the market rewards for skills or luck. When the market

selects for luck over skills, we have a violation of the MSH that is qualitatively different

from cases found in previous literature. Although markets select against traders with

correct beliefs, equilibrium prices of short-lived assets are asymptotically accurate.

A Appendix: Reconciling small and large economies

A large economy in which all clusters have traders with identical beliefs is formally equivalent

to a small economy. In this case, the risk/dimensionality component in the survival indexes of

every cluster is moot (kMAR=0) and, consistent with Sandroni (2000) and Blume and Easley

(2006), we find that risk attitudes do not play a role in survival.

Proposition 7. In a small HDF economy that satisfies A1-A4, ∀σ ∈ Ŝ, irrespective of risk

attitudes, the market selects for the most accurate trader.

Proof. Application of Proposition 1, noticing that in a small economy ∀j=1,...,N , k
MAR
j = 0.

14Proposition 6, together with Example 1 (page 7), could foster the incorrect conjecture that our result
implies that the market can achieve perfect foresight on iid coin tosses. This conjecture is incorrect and
not consistent with our result for at least two reasons: first, the competitive equilibrium does not exist
with a belief structure like the one in Example 1 (Ostroy, 1984) — it violates our definition of cluster C3.
Second, the approximation of the integral of Lemma 2 requires enough smoothness (C3 and A4) around the
maximum-likelihood trader in each cluster (Schwarz, 1978). This assumption is violated when trader beliefs
are Dirac deltas on single sequences.
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The different implications of risk attitudes on survival for large and small economies can

be puzzling. Although Proposition 7 applies to economies with an arbitrarily large number of

traders, Proposition 3 implies that it is not valid in large economies. This apparent contradic-

tion disappears if instead of focusing on vanishing versus surviving (i.e., on the dichotomous

distinction between zero versus non-zero asymptotic consumption-shares), we look at the size

of the asymptotic consumption-shares.

Propositions 8 and 9 show that the results of Propositions 3 and 4 hold, approximately, for

some small economies with a large number of traders. As intuition suggests, the discrepancy

between the small and large setting is narrower when the small economy has a large number

of traders.

Proposition 8. ∀γU , γB ∈ (0,∞),∀ε > 0, there exists a n̂(g, C0) such that, in every small,

HDF economy with 2n > 2n̂ traders that satisfies A1-A4 with a group of traders, AU , with

heterogeneous beliefs AU = {p1, ..., pn} and n Bayesian traders, AB, with prior g on AU ; the

following inequalities hold ∀σ ∈ Ŝ∗:

i) γU ∈ (0, 1)⇔ lim
t→∞

CB(σt) < ε;

ii) γU = 1⇔ lim
t→∞

CB(σt) ∈ (ε, 1− ε);

iii) γU ∈ (1,∞)⇔ lim
t→∞

CB(σt) > 1− ε.

Where Ŝ∗ is the set of sequences in which the Bayesian posterior eventually concentrates on a

model in its support: Ŝ∗ := {σ : ∃i ∈ AU : i 6= j ∈ AU ⇒ lim
t→∞

pi(σt)
pj(σt) = 0}.

Proof. Proven by Example 5.

Example 5: (Small sample analog of Example 3).

Consider a small economy with two states S = {W,R} and 2n traders. Traders 1,...,n, group

AU , have a CRRA parameter γU and heterogeneous iid Bernoulli beliefs:
{
p1(w), ..., pn−1(w)

}
={

1
n , ...,

n−1
n , 1

}
. Traders n + 1,...,2n are Bayesian traders, group AB , with prior G on AU =

{∪ni=1p
i}
(
i.e., pB(σt) =

∑n
i=1 p

i(σt)gi
)

and CRRA parameter γB .

For ease of exposition, let ∀i, ci0 = 1
2n , G be the Uniform prior, and p1 be the model on which
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pB concentrates. Rearranging the FOC as for Equation 4 and working through the notation:15

CB(σt)
1
γU

CU (σt)
1
γB

=
( 1

2 )γB

(
1
n + 1

n

∑n
i=2

pi(σt)
p1(σt)

)
(

1
2n + 1

2n

∑n
i=2

(
pi(σt)
p1(σt)

) 1
γU

)γU →t→∞ (2γU−γB)nγU−1 ∀σ ∈ Ŝ∗.16 (5)

Because (2γU−γB ) ∈ (0,∞),∀ε > 0,∃n̄: n > n̄ implies the condition of Proposition 8.

Proposition 9. Under the conditions of Proposition 8, if we further assume P = pB, max
i
gi <

ε, and γU < 1; then:

i) ∀i ∈ AU , P{σ : lim
t→∞

pi(σt)
P (σt) > 0} < ε;

ii) lim
t→∞

CB(σt) < ε P -a.s.;

iii) ∃î(σ) ∈ AU : lim
t→∞

c
î(σ)
t (σ) > 1− ε Pa.s..

Proof.

i) ∀i ∈ {1, ..., n}, P{σ : lim
t→∞

pi(σt)
P (σt) > 0} = gi < ε. Because, by assumption, ∀i, the prior

attaches probability g1 < ε to those sequences to which pi gives probability 1.

ii) P = pB ⇒ P ({Ŝ∗}) = 1. Thus, rearranging Eq.5, n̄ >

(
ε

1
γB

(1−ε)
1
γU

2γB−γU
) 1
γU−1

⇒

lim
t→∞

CB(σt) < ε P -a.s..

iii) P = pB ⇒ P ({Ŝ∗}) = 1. Thus, by Massari (2017)’s necessary and sufficient condition for

a trader to vanish, only one trader, i, in AU survives P -a.s.. The result follows noticing that

lim
t→∞

ci(σt) = lim
t→∞

CU (σt) = lim
t→∞

1− CB(σt) = 1− ε for n > n̄.

The intuition mimics the one we presented in Section 3.2. The data-generating process

can be understood as describing this two-steps procedure. In the first step, Nature randomizes

according to g to decide the probability of Red: P(R). In the second step, Nature uses P(R)

to generate an iid sequence of length t. While traders in AB know that Nature is randomizing

over AU according to g, each trader in AU is dogmatically sure that his model is the correct

one, an event whose true probability is smaller than ε. Because Nature’s choice is restricted to

models in AU , exactly one trader in AU is empirically accurate, î. For large n, this trader is

“almost lucky” (his ex-ante probability of being empirically accurate is at most ε) and “almost

dominates” (his asymptotic consumption-share is above 1-ε).

15 CB(σt)

1
γB

CU (σt)

1
γU

=

(∑
i∈AB

cit(σ)
)γB(∑

i∈AU
cit(σ)

)γU =

∑2n
i=n

1
2n
pB(σt)

1
γB

γB
∑n

i=1
1

2n
pi(σt)

1
γU

γU =
( 1
2

)
γ
B
pB(σt)∑n

i=1
1

2n
pi(σt)

1
γU

γU =

( 1
2

)
γ
B

(
1
n

+ 1
n

∑n
i=2

pi(σt)

p1(σt)

)
 1

2n
+ 1

2n

∑n
i=2

(
pi(σt)

p1(σt)

) 1
γU

γU .

16The convergence occurs by definition of Ŝ∗.
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Examples 3 and 5 highlights the role played by risk attitudes and belief set dimensionality

in small and large economies. Risk attitudes affect the asymptotic consumption-shares dis-

tribution through their effect on the concentration rate of consumption-shares: lower values

of gamma determine a faster consumption-shares concentration rate, thus a lower asymptotic

consumption-shares for the Bayesian cluster. The dimensionality of AU affects cluster survival

through its effect on the concentration rate of both the Bayesian posterior and the consumption-

shares as follows. If |A| < |N|, both convergence rates are exponential; the Bayesian measure

and the aggregate risk-adjusted measure are mutually absolutely continuous and the Bayesian

survives without dominating. If |A| = |R|, both convergence rates are slower than exponen-

tial (they are respectively O

(
1

t
kBIC

2

)
and O

(
1

t
kMAR

2γ

)
), the two measures are not mutually

absolutely continuous, and asymptotic consumption-shares depend on γ, kBIC and kMAC .

B Appendix: Proofs

We make use of the notations o(.) and O(.) with the following meanings: f(x) = o(g(x))

abbreviates lim
x→∞

f(x)
g(x) → 0, f(x) = O(g(x)), abbreviates lim sup f(x)

g(x) < +∞, and f(x) ∼ g(x)

abbreviates lim f(x)
g(x) = 1.

Proof of Lemma 2

Proof.
(∫

Aj
pi(σt)

1
γj ci0di

)γj
= eln pî(σ

t)(σt)−
γjk

MAR
j
2 ln t+O(1). It follows from Lemma 5 by sub-

stituting Aj for A, multiplying by γj , exponentiating and ignoring the constant terms.

The proof of Lemmas 4 and 5 follows the steps of Grünwald’s (2007, pg. 248) proof of the

BIC (if γ = 1 and c0 is a density, the two proofs coincide).

Lemma 4. Let M be a member of the exponential family parametrized by A, and ci0 be a

function that satisfies A4; then:

ln

∫
A

pi(σt)
1
γ ci0di = ln

∫
A

e−
t
γD(pî(σ

t)||pi)ci0di+ ln pî(σ
t)(σt).

Where D(pî(σ
t)||pi) = Epî(σt) ln pî(σ

t)

pi is the Kullback-Leibler divergence between pî(σ
t) and pi.
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Proof.

ln

∫
A

pi(σt)
1
γ ci0di = ln

∫
A

pi(σt)
1
γ ci0di+ ln pî(σ

t)(σt)
1
γ − ln pî(σ

t)(σt)
1
γ

= ln

∫
A

(
pi(σt)

pî(σt)(σt)

) 1
γ

ci0di+ ln pî(σ
t)(σt)

1
γ

= ln

∫
A

e
1
γ

(
ln pi(σt)−ln pî(σ

t)(σt)
)
ci0di+ ln pî(σ

t)(σt)
1
γ

=a ln

∫
A

e−
t
γD(pî(σ

t)||pi)ci0di+
1

γ
ln pî(σ

t)(σt)

a: For example, if pi(σt = 1) = i is iid Bernoulli, the result follows because:

ln pi(σt)− ln pî(σ
t) = t

(
1

t

t∑
τ=0

∑
s=0,1

Iστ=s ln
pi(s)

pî(σt)(s)

)
= −tEpî(σt) ln

pî(σ
t)(s)

pi(s)
= −tD(pî(σ

t)||pi)

Lemma 5. Let M be a member of the exponential family parametrized by A, and ci0 be a

function that satisfies A4; then, ∀σ ∈ Ŝ:

ln

∫
A

pi(σt)
1
γ ci0di =

1

γ
ln pî(σ

t)(σt) + ln
√
γ + ln cî0 −

1

2
ln

t

2π
− ln

√
det I(pî(σt)) + o(1).

Where I(pî(σ
t)) is the Fisher information evaluated at pî(σ

t).

Proof. By Lemma 4

ln

∫
A

pi(σt)
1
γ ci0di = ln

∫
A

e−
t
γD(pî(σ

t)||pi)ci0di+
1

γ
ln pî(σ

t)(σt)

WLOG, let focus on the case in which M is the iid Bernoulli family, so that pi = i.17 Let

Bt = {i ∈ [̂i(σt)− t− 1
2 +α, î(σt)+ t−

1
2 +α]} with 0 < α < 1

2 . To gain intuition, take α very small,

so that Bt is a neighborhood of the maximum-likelihood that shrinks to 0 at a rate slightly

slower than 1√
t

. Because σ ∈ Ŝ, Bt concentrates around î and because ci0 is continuous, strictly

positive in A, there is a T : ∀t > T,Bt ⊂ A0 where A0 is a compact subset of A in which ci0 > 0.

We always assume t > T .

By additivity of the integral:

∫
A

e−
t
γD(pî(σ

t)||pi)ci0di =

∫
A\Bt

e−
t
γD(pî(σ

t)||pi)ci0di+

∫
Bt

e−
t
γD(pî(σ

t)||pi)ci0di

17The generalization to the Multinomial case and non-iid inter-temporal structures is straightforward.
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The proof is done by performing a second-order Taylor expansion of D(pî(σ
t))||pi) to bound

the two integrals. M is a member of the exponential family (Bernoulli in our case), thus, by the

results in Chapter 19 of Grünwald (2007), D(pî||P ) can be well approximated in B as follows:

D(pî(σ
t)||pi) =

1

2

(
î(σt)− i

)2

I(pi
∗
) (6)

for some i∗ ∈ Bt such that i∗ lies between i and î.

† First integral: ∃k, a <∞ : I1 =
∫
A\Bt e

− t
γD(pî(σ

t)||pi)ci0di < ke−at
2α → 0.

Remember that D(pî(σ
t)||pi) as a function of i is strictly convex, has a minimum at i = î(σt)

and is increasing in |i− î(σt)|, so that:

0 <

∫
A\Bt

e−
t
γD(pî(σ

t)||pi)ci0di <

∫
A\Bt

e
− t
γ min
i∈A\Bt

D(pî(σ
t)||pi)

ci0di

By Equation 6 and the definition of Bt

min
i∈A\Bt

D(pî(σ
t)||pi) ≥ 1

2
t−1+2α min

i∈int(A)
I(pi)

so that, since I(pi) is continuous and > 0 for all i ∈ A, and
∫
A\Bt c

i
0di <∞,

0 <

∫
A\Bt

e−
t
γD(pî(σ

t)||pi)ci0di <

∫
A\Bt

e
− t
γ

(
1
2 t
−1+2α min

i∈int(A)
I(pi)

)
ci0di < ke−at

2α

;

for a = 1
2γ min

i∈int(A)
I(pi) > 0 and k =

∫
A\Bt c

i
0di <

∫
A
ci0di <∞.

‡ Second integral: I2 =
∫
Bt
e−

t
γD(pî(σ

t)||pi)ci0di ∼
√

2πcî0√
t
I(pî)
γ

.

Let I−t = inf
i′∈Bt

I(pi
′
), I+

t = sup
i′∈Bt

I(pi
′
), c−t = inf

i′∈Bt
ci
′

0 , c
+
t = sup

i′∈Bt
ci
′

0 ,

by Equation 6

I2 =

∫
Bt

e−
t
γD(pî(σ

t)||pi)ci0di =

∫
Bt

e−
t

2γ (̂i(σt)−i)2I(i′)ci0di

where i′ depends on i. Using the definitions above, we get

c−t

∫
Bt

e−
t

2γ (̂i(σt)−i)2I+
t di ≤ I2 ≤ c+t

∫
Bt

e−
t

2γ (̂i(σt)−i)2I−t di.

We now perform the substitutions z = (̂i(σt) − i)
√
t
I+
t

γ on the left integral and z = (̂i(σt) −
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i)
√
t
I−t
γ on the right integral, to get

c−t√
t
I+
t

γ

∫
|z|<tα

√
I−t

e−
1
2 z

2

dz ≤ I2 ≤
c+t√
t
I−t
γ

∫
|z|<tα

√
I+
t

e−
1
2 z

2

dz.

We now recognize both integrals as standard Gaussian. Because, as t → ∞, I−t → I(pî) and

I+
t → I(pî), the domain of integration tends to infinity for both integrals, so that they both

converge to
√

2π. Since c+t → cî0 and c−t → cî0 the constant in both integrals converges to

cî0√
t
I(pî)
γ

and we get I2 ∼
√

2πcî0√
t
I(pî)
γ

.

Putting † and ‡ together:

ln

∫
A

pi(σt)
1
γ ci0di = ln (I1 + I2) +

1

γ
ln pî(σ

t)(σt)

=
1

γ
ln pî(σ

t)(σt) + ln
√
γ + ln cî0 −

1

2
ln

t

2π
− ln

√
det I(pî) + o(1)

Note that the approximation holds uniformly for all σt ∈ Ŝ because i) the bound on I1 does

not depend on σt, and ii) convergence of I2 is uniform because ci0 and I(pi) are continuous

functions of i over the compact set A0.

Proof of Corollary 1

Proof.

βtj

(∫
Ak

pi(σt)
1
γ ci0di

)γk
=By Lem.2 et ln βj+ln pî(σ

t)(σt)− γk
MAR

2 ln t+O(1)

= eln pî(σ
t)(σt)− kMAR2 ln t+O(1) ∗ et ln βj−

(
γkMAR−kMAR

2

)
ln t+O(1)

=By BIC

∫
Ak

pi(σt)di ∗ et ln βj−
(
γkMAR−kMAR

2

)
ln t+O(1)

Proof of Lemma 3

Proof. Let Aγ be a positive mass of Bayesian traders with regular priors, gi(θ) on the same

k-dimensional parameter space Θ. We have to show that their risk-adjusted aggregate beliefs

are equivalent to the beliefs of a cluster of Bayesian traders with an identical regular prior f

on Θ : pB(σt). Let ḡ = sup
i,θ∈intΘ

gi(θ) and g = inf
i,θ∈intΘ

gi(θ). Note that g > 0, because the prior

distribution of every trader in Aγ is strictly positive and that ḡ <∞ because all of the gi’s are
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continuous in the simplex, thus bounded in its (strict) interior. Because the convergence result

of Lemma 5 is uniform, it follows that

(∫
Aγ

ci0p
i(σt)

1
γ di

)γ
=

(∫
Aγ

ci0

(∫
Θ

p(σt|θ)gi(θ) dθ
) 1
γ

di

)γ

∈

[(∫
Aγ

ci0

(∫
Θ

p(σt|θ)g dθ
) 1
γ

di

)γ
,

(∫
Aγ

ci0

(∫
Θ

p(σt|θ)ḡ dθ
) 1
γ

di

)γ]

=

[∫
Θ

p(σt|θ)g dθ

(∫
Aγ

ci0di

)γ
,

∫
Θ

p(σt|θ)ḡ dθ

(∫
Aγ

ci0di

)γ]
=By Lem.3 eln pθ̂(σ

t)(σt)− k2 ln t+O(1)

=By BIC O(1)

∫
Θ

p(σt|θ)f(θ)dθ

= O(1)pB(σt).

Proof of Proposition 4

Proof. Lets focus WLOG on the Bernoulli case: pB(σt) =
∫ 1

0
pi(σt)gidi.

For the most part, Proposition 4 coincides with Proposition 3. We only need to show two

additional things: a) the MSH fails with a probability arbitrarily close to 1, i.e.: ∀ε > 0, pB(Ŝ) >

1− ε; and b), lucky traders dominate.

Part a: By assumption, gi is regular, thus continuous on (0,1). Therefore, the probability

that the gi gives to the set of parameters in the strict interior of the prior support is arbitrarily

close to 1: ∀ε > 0,∃ε1 > 0 : pg(i ∈ (ε1, 1− ε1)) > 1− ε. By the Strong Law of Large Numbers,

i ∈ (ε1, 1 − ε1) ⇒ î(σ) ∈ Ŝ pi-a.s. so that ∀ε1 > 0, pB(Ŝ) ≥ pg(i ∈ (ε1, 1 − ε1)). Thus

∀ε > 0,∃ε1 > 0 : pB(Ŝ) ≥ pg(i ∈ (ε1, 1− ε1)) > 1− ε.

Part b: Let î(σt) be the beliefs of the maximum-likelihood trader in the cluster that

dominates, A, and let {Bt(̂i)}∞t=1 be the following sequence of shrinking subclusters of A:

Bt(̂i) = {i ∈ [̂i(σt)− t− 1
2 +α, î(σt) + t−

1
2 +α]}, for 0 < α < 1

2 . Rearranging Equation 4 and using

† and ‡ from the proof of Lemma 5,

lim
t→∞

∫
i∈A\Bt (̂i) c

i
t(σ)di∫

i∈Bt (̂i) c
i
t(σ)di

= lim
t→∞

∫
i∈A\Bt (̂i) e

− t
γD(pî(σ

t)||pi)c0di∫
i∈Bt (̂i) e

− t
γD(pî(σt)||pi)c0di

= 0.

Thus, by Lemma 1, consumption-shares concentrate in the shrinking interval Bt(̂i) around

pî(σ
t). The market selects for luck because:
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• lim
t→∞

sup
i∈Bt (̂i)

||i− î|| = 0: the market rewards an empirically accurate trader.

•
∫
A

lim
t→∞

IBtg
idi = 0, trader î is not a priori accurate.

Proof of Proposition 5

Proof. Let AS be a skilled cluster.

a) is necessary for AS to vanish P -a.s..

By contradiction: in a small economy AS survives P -a.s.(Sandroni, 2000);

b) is necessary for AS to vanish P -a.s..

By contradiction: if γj > 1 for all clusters in the economy, then sj − ss → −∞ ∀j 6= s and As

dominates by Proposition 1.

c) is necessary for AS to vanish P -a.s..

By contradiction: if kBICP = 0, then AS has the maximal survival index because kMAR
S = 0

and survives by Proposition 1.

Proof of Proposition 6

Proof. If the skilled cluster dominates, the convergence follows from standard economic argu-

ments (Sandroni, 2000). Otherwise, the result follows proving these four claims:

Claim 1: a cluster that vanishes does not affect next-period equilibrium prices;

Claim 2: among traders of the dominating cluster, consumption-shares concentrate around the

lucky trader;

Claim 3: the beliefs of non-lucky traders do not affect equilibrium prices;

Claim 4: the beliefs of the lucky trader are eventually accurate, because they need to beat a skilled

cluster.

Let C̄, β̄, γ̄ and Ā be the aggregate consumption, discount factor, CRRA parameter and belief

set of the cluster with the highest survival index, j̄, respectively.

Claim 1: ∀σ ∈ Ŝ, q(σt|σt−1) = C̄t−1(σ)γ̄+o(1)

C̄t(σ)γ̄+o(1)

 β̄

∫
Ā

pi(σt)
1
γ̄ ci0di∫

Ā p
i(σt−1)

1
γ̄ ci0di

γ̄+o(1)

1+o(1)

 .
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In equilibrium (as per Equation 1), Cjt (σ) = β
t
γj

∫
Aj

pi(σt)
1
γj ci0di

qt(σ)
1
γj

. Exponentiating by γj and

summing over clusters, we obtain qt(σ) =

∑
j

(
β
t
γj
∫
Aj

pi(σt)
1
γj ci0di

)γj
∑
j C

j
t (σ)γj

, so that:

q(σt|σt−1) =
qt(σ)

qt−1(σ)
=

∑
j C

j
t−1(σ)γj∑

j C
j
t (σ)γj

∑
j

(
β

t
γj
∫
Aj
pi(σt)

1
γj ci0di

)γj
∑
j

(
β
t−1
γj
∫
Aj
pi(σt−1)

1
γj ci0di

)γj . (7)

By Proposition 1, j 6= j̄ ⇒ Cjt (σ)γj = o(1).

By Lemma 5, j 6= j̄ ⇒
βtj

(∫
Aj

pi(σt)
1
γj ci0di

)γj
β̄t
(∫

Ā
ci0p

i(σt)
1
γ̄ di

)γ̄ = o(1).

Therefore, Equation 7 obeys the following asymptotic.

q(σt|σt−1) =

∑
j C

j
t−1(σ)γj∑

j C
j
t (σ)γj

∑
j

(
β

t
γj
∫
Aj
pi(σt)

1
γj ci0di

)γj
∑
j

(
β
t−1
γj
∫
Aj
pi(σt−1)

1
γj ci0di

)γj

=
C̄t−1(σ)γ̄ + o(1)

C̄t(σ)γ̄ + o(1)

 β̄t
(∫

Ā
ci0p

i(σt)
1
γ̄ di
)γ̄

+
∑
j 6=j̄

(
β

t
γj
∫
Aj
pi(σt)

1
γj ci0di

)γj
β̄t−1

(∫
Ā
ci0p

i(σt−1)
1
γ̄ di
)γ̄

+
∑
j 6=j̄

(
β
t−1
γj
∫
Aj
pi(σt−1)

1
γj ci0di

)γj


=
C̄t−1(σ)γ̄ + o(1)

C̄t(σ)γ̄ + o(1)


β̄

(∫
Ā

pi(σt)
1
γ̄ ci0di∫

Ā
pi(σt−1)

1
γ̄ ci0di

)γ̄
+
∑
j 6=j̄

(
β
t
γj
∫
Aj

pi(σt)
1
γj ci0di

)γj
β̄t−1

(∫
Ā
ci0p

i(σt−1)
1
γ̄ di

)γ̄

1 +

∑
j 6=j̄

(
β
t−1
γj
∫
Aj

pi(σt−1)
1
γj ci0di

)γj
β̄t−1

(∫
Ā
ci0p

i(σt−1)
1
γ̄ di

)γ̄



=
C̄t−1(σ)γ̄ + o(1)

C̄t(σ)γ̄ + o(1)


β̄

(∫
Ā

pi(σt)
1
γ̄ ci0di∫

Ā
pi(σt−1)

1
γ̄ ci0di

)γ̄
+ o(1)

1 + o(1)



Claim 2: ∀σ ∈ Ŝ, sup
i∈C̄t−1

∥∥∥∥ cit−1(σ)γ̄

cit(σ)γ̄
− c

î(σt)
t−1 (σ)

c
î(σt)
t (σ)

∥∥∥∥→ 0.

Let {B̄T }∞T=1 be a sequence of subsets of Ā centered around î as in the proof of Lemma 4

but with T = o(t), B̄cT = Ā \ B̄T its complement and C̄B̄T (σ) and C̄B̄cT (σ) be the aggregate

consumption of traders in BT and BcT respectively. By Lemma 5, † and ‡,
C̄B̄c

T
(σ)

C̄B̄T (σ)
→ 0 for
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every T . Thus

C̄t−1(σ)γ̄

C̄t(σ)γ̄
=

(
C̄B̄T,t(σ) + CB̄cT,t(σ)

)γ̄
(
C̄B̄T,t−1

(σ) + CB̄cT,t−1
(σ)
)γ̄

∈

{
min{c ∈ C̄B̄T,t(σ)}

max{c ∈ C̄B̄T,t−1
(σ)}

− o(1),
max{c ∈ C̄B̄T,t(σ)}
min{c ∈ C̄B̄T,t−1(σ)}

+ o(1)

}

→a c
î(σt)
t (σ)

c
î(σt)
t−1 (σ)

.

(a) The limit follows because sup
i∈B̄T,t−1

||̂i(σt−1)− i|| →t,T→∞ 0 uniformly and ci is differentiable

in i.

Claim 3: ∀σ ∈ Ŝ,

∥∥∥∥∥
(∫

Ā
pi(σt)

1
γ̄ ci0di∫

Ā
pi(σt−1)

1
γ̄ ci0di

)γ̄
− p̄î(σt)(σt|σt−1)

∥∥∥∥∥
∞

→ 0.

(∫
Ā

pi(σt)
1
γ̄ ci0di∫

Ā
pi(σt−1)

1
γ̄ ci0di

)γ̄
=

 ∫
B̄t
e−

t
γD(pî(σ

t)||pi)ci0di+
∫
Ā\B̄t e

− t
γD(pî(σ

t)||pi)ci0di∫
B̄t−1

e−
t
γD(pî(σt)||pi)ci0di+

∫
Ā\B̄t−1

e−
t
γD(pî(σt)||pi)ci0di

γ

=


∫
B̄t
e−

t
γD(pî(σ

t)||pi)ci0di+ o

(∫
B̄t−1

e−
t
γD(pî(σ

t)||pi)ci0di

)
∫
B̄t−1

e−
t−1
γ D(pî(σt−1)||pi)ci0di+ o

(∫
B̄t−1

e−
t−1
γ D(pî(σt−1)||pi)ci0di

)

γ

∈



inf
i∈B̄t−1

pi(σt)

 √
2πci0√
t
I(pi)
γ


γ

sup
i∈B̄t−1

pi(σt−1)

 √
2πci0

√
(t−1)

I(pi)
γ

γ − o(1);

sup
i∈B̄t−1

pi(σt)

 √
2πci0√
t
I(pi)
γ


γ

inf
i∈B̄t−1

pi(σt−1)

 √
2πci0

√
(t−1)

I(pi)
γ

γ + o(1)



∈


inf

i∈B̄t−1

p
i
(σt|σt−1

)

inf
i∈B̄t−1

pi(σt−1)

 √
2πci0√
t
I(pi)
γ


γ

sup
i∈B̄t−1

pi(σt−1)

 √
2πci0

√
(t−1)

I(pi)
γ

γ − o(1); sup
i∈B̄t−1

p
i
(σt|σt−1

)

sup
i∈B̄t−1

pi(σt−1)

 √
2πci0√
t
I(pi)
γ


γ

inf
i∈B̄t−1

pi(σt−1)

 √
2πci0

√
(t−1)

I(pi)
γ

γ + o(1)


→a p̄î(σ

t−1)
(σt|σt−1

).

(a) Because ∃T < ∞ : ∀t > T, ∀i ∈ Bt−1, p
i(σt), pi(σt−1), I(pi), ci0 are all differentiable and

strictly positive functions of i, and sup
i∈B̄t−1

∥∥∥î(σt−1)− i
∥∥∥→ 0 uniformly.

Claim 4: ∀σ ∈ Ŝ,
∥∥∥P (σt|σt−1)− pî(σt−1)(σt|σt−1)

∥∥∥
∞
→ 0.

We can have a violation of the MSH involving a positive mass of traders only if there

is a cluster J such that P = pj . Moreover, by Proposition 5, this can happen only if
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P =
∫

Θj
pigidi with Θj with a positive Lebesgue measure. Finally, the empirical accuracy

term dominates the cluster dimensionality and the BIC dimensionality term, thus only a

cluster with an empirically accurate trader can dominate a cluster with correct beliefs.

Therefore, it must be the case that the maximum-likelihood parameter according to P,

p
î(σt)
P , and the maximum-likelihood trader of the competing unskilled cluster coincide:

p
î(σt)
P = p̄î(σ

t). The result follows applying the proof of C3 (with γ = 1) to the true

probability: P (σt|σt−1) =
∫

ΘJ

pi(σt)gi0di∫
ΘJ

pi(σt−1)gi0di
:

lim
t→∞

∥∥∥P (σt|σt−1)− p̄î(σ
t)(σt|σt−1)

∥∥∥
∞

= lim
t→∞

∥∥∥∥∥
∫

ΘJ

pi(σt)gi0di∫
ΘJ

pi(σt−1)gi0di
− p̄î(σ

t)(σt|σt−1)

∥∥∥∥∥
∞

= lim
t→∞

∥∥∥pî(σt)P (σt|σt−1)− p̄î(σ
t)(σt|σt−1)

∥∥∥
∞

= 0.

Because the convergence results in Claims 1-4 are all uniform, we obtain the desired:

∀σ ∈ Ŝ,

∥∥∥∥∥q(σt|σt−1)− uî(σ
t−1)(c

î(σt)
t )′

uî(σt−1)(c
î(σt)
t )′

βP (σt|σt−1)

∥∥∥∥∥
∞

→ 0.
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Pólya, G. (1930). Sur quelques points de la théorie des probabilités. In Annales de l’institut
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